Difference between revisions of "SANSKAR'S OG PROBLEMS"
m |
|||
Line 5: | Line 5: | ||
==Problem1 == | ==Problem1 == | ||
Let <math>\overline{ab}</math> be a 2-digit [[positive integer]] satisfying <math>\overline{ab}^2</math> = <math>a! +b!</math>. Find <math>a+b</math> . | Let <math>\overline{ab}</math> be a 2-digit [[positive integer]] satisfying <math>\overline{ab}^2</math> = <math>a! +b!</math>. Find <math>a+b</math> . | ||
+ | ==Problem2 == | ||
+ | For any any [positive integer] <math>n</math>, <math>n</math>>1 can <math>n!</math> be a [perfect square]? If yes, give one such <math>n</math>. If no, then prove it. |
Revision as of 08:23, 18 January 2024
Hi, this page is created by ...~ SANSGANKRSNGUPTA This page contains exclusive problems made by me myself. I am the creator of these OG problems. What OG stands for is a secret! Please post your solutions with your name. If you view this page please increment the below number by one:
Problem1
Let be a 2-digit positive integer satisfying = . Find .
Problem2
For any any [positive integer] , >1 can be a [perfect square]? If yes, give one such . If no, then prove it.