Difference between revisions of "2002 AMC 12P Problems"
Line 143: | Line 143: | ||
== Problem 10 == | == Problem 10 == | ||
− | Let <math>f_n (x) = sin^n x + cos^n x.</math> For how many <math>x</math> in | + | Let <math>f_n (x) = sin^n x + cos^n x.</math> For how many <math>x</math> in <math>[0,\pi]</math> is it true that |
<math> | <math> | ||
Line 184: | Line 184: | ||
<math> | <math> | ||
− | \text{(A) } | + | \text{(A) one} |
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) two} |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) three} |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) four} |
\qquad | \qquad | ||
− | \text{(E) | + | \text{(E) more than four} |
</math> | </math> | ||
Line 289: | Line 289: | ||
== Problem 18 == | == Problem 18 == | ||
− | + | If </math>a,b,c<math> are real numbers such that </math>a^2 + 2b =7<math>, </math>b^2 + 4c= -7,<math> and </math>c^2 + 6a= -14<math>, find </math>a^2 + b^2 + c^2.<math> | |
− | < | + | </math> |
− | + | \text{(A) }14 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | \text{(A) } | ||
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) }21 |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) }28 |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }35 |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }49 |
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 18|Solution]] | [[2002 AMC 12P Problems/Problem 18|Solution]] | ||
Line 325: | Line 307: | ||
== Problem 19 == | == Problem 19 == | ||
− | + | In quadrilateral </math>ABCD<math>, </math>m\angle B = m \angle C = 120^{\circ}, AB=3, BC=4, and CD=5.<math> Find the area of </math>ABCD.<math> | |
− | <math> | + | </math> |
− | \text{(A) } | + | \text{(A) }15 |
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) }9 \sqrt{3} |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) }\frac{45 \sqrt{3}}{4} |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }\frac{47 \sqrt{3}}{4} |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }15 \sqrt{3} |
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 19|Solution]] | [[2002 AMC 12P Problems/Problem 19|Solution]] | ||
Line 343: | Line 325: | ||
== Problem 20 == | == Problem 20 == | ||
− | Points <math>A = (3,9)< | + | Points </math>A = (3,9)<math>, </math>B = (1,1)<math>, </math>C = (5,3)<math>, and </math>D=(a,b)<math> lie in the first quadrant and are the vertices of quadrilateral </math>ABCD<math>. The quadrilateral formed by joining the midpoints of </math>\overline{AB}<math>, </math>\overline{BC}<math>, </math>\overline{CD}<math>, and </math>\overline{DA}<math> is a square. What is the sum of the coordinates of point </math>D<math>? |
− | <math> | + | </math> |
\text{(A) }7 | \text{(A) }7 | ||
\qquad | \qquad | ||
Line 355: | Line 337: | ||
\qquad | \qquad | ||
\text{(E) }16 | \text{(E) }16 | ||
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 20|Solution]] | [[2002 AMC 12P Problems/Problem 20|Solution]] | ||
Line 361: | Line 343: | ||
== Problem 21 == | == Problem 21 == | ||
− | Four positive integers <math>a< | + | Four positive integers </math>a<math>, </math>b<math>, </math>c<math>, and </math>d<math> have a product of </math>8!<math> and satisfy: |
<cmath> | <cmath> | ||
Line 373: | Line 355: | ||
</cmath> | </cmath> | ||
− | What is <math>a-d< | + | What is </math>a-d<math>? |
− | <math> | + | </math> |
\text{(A) }4 | \text{(A) }4 | ||
\qquad | \qquad | ||
Line 385: | Line 367: | ||
\qquad | \qquad | ||
\text{(E) }12 | \text{(E) }12 | ||
− | < | + | <math> |
[[2001 AMC 12 Problems/Problem 21|Solution]] | [[2001 AMC 12 Problems/Problem 21|Solution]] | ||
Line 391: | Line 373: | ||
== Problem 22 == | == Problem 22 == | ||
− | In rectangle <math>ABCD< | + | In rectangle </math>ABCD<math>, points </math>F<math> and </math>G<math> lie on </math>AB<math> so that </math>AF=FG=GB<math> and </math>E<math> is the midpoint of </math>\overline{DC}<math>. Also, </math>\overline{AC}<math> intersects </math>\overline{EF}<math> at </math>H<math> and </math>\overline{EG}<math> at </math>J<math>. The area of the rectangle </math>ABCD<math> is </math>70<math>. Find the area of triangle </math>EHJ<math>. |
− | <math> | + | </math> |
\text{(A) }\frac {5}{2} | \text{(A) }\frac {5}{2} | ||
\qquad | \qquad | ||
Line 403: | Line 385: | ||
\qquad | \qquad | ||
\text{(E) }\frac {35}{8} | \text{(E) }\frac {35}{8} | ||
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 22|Solution]] | [[2002 AMC 12P Problems/Problem 22|Solution]] | ||
Line 411: | Line 393: | ||
A polynomial of degree four with leading coefficient 1 and integer coefficients has two real zeros, both of which are integers. Which of the following can also be a zero of the polynomial? | A polynomial of degree four with leading coefficient 1 and integer coefficients has two real zeros, both of which are integers. Which of the following can also be a zero of the polynomial? | ||
− | <math> | + | </math> |
\text{(A) }\frac {1 + i \sqrt {11}}{2} | \text{(A) }\frac {1 + i \sqrt {11}}{2} | ||
\qquad | \qquad | ||
Line 421: | Line 403: | ||
\qquad | \qquad | ||
\text{(E) }\frac {1 + i \sqrt {13}}{2} | \text{(E) }\frac {1 + i \sqrt {13}}{2} | ||
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 23|Solution]] | [[2002 AMC 12P Problems/Problem 23|Solution]] | ||
Line 427: | Line 409: | ||
== Problem 24 == | == Problem 24 == | ||
− | In <math>\triangle ABC< | + | In </math>\triangle ABC<math>, </math>\angle ABC=45^\circ<math>. Point </math>D<math> is on </math>\overline{BC}<math> so that </math>2\cdot BD=CD<math> and </math>\angle DAB=15^\circ<math>. Find </math>\angle ACB<math>. |
− | <math> | + | </math> |
\text{(A) }54^\circ | \text{(A) }54^\circ | ||
\qquad | \qquad | ||
Line 439: | Line 421: | ||
\qquad | \qquad | ||
\text{(E) }90^\circ | \text{(E) }90^\circ | ||
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 24|Solution]] | [[2002 AMC 12P Problems/Problem 24|Solution]] | ||
Line 445: | Line 427: | ||
== Problem 25 == | == Problem 25 == | ||
− | Consider sequences of positive real numbers of the form <math>x, 2000, y, \dots< | + | Consider sequences of positive real numbers of the form </math>x, 2000, y, \dots<math> in which every term after the first is 1 less than the product of its two immediate neighbors. For how many different values of </math>x<math> does the term 2001 appear somewhere in the sequence? |
− | <math> | + | </math> |
\text{(A) }1 | \text{(A) }1 | ||
\qquad | \qquad | ||
Line 457: | Line 439: | ||
\qquad | \qquad | ||
\text{(E) more than }4 | \text{(E) more than }4 | ||
− | + | $ | |
[[2002 AMC 12P Problems/Problem 25|Solution]] | [[2002 AMC 12P Problems/Problem 25|Solution]] |
Revision as of 21:25, 29 December 2023
2002 AMC 12P (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
Problem 1
Which of the following numbers is a perfect square?
Problem 2
The function is given by the table
If and for , find
Problem 3
The dimensions of a rectangular box in inches are all positive integers and the volume of the box is in. Find the minimum possible sum of the three dimensions.
Problem 4
Let and be distinct real numbers for which Find
Problem 5
For how many positive integers is
Problem 6
Participation in the local soccer league this year is % higher than last year. The number of males increased by % and the number of females increased by %. What fraction of the soccer league is now female?
Problem 7
How many three-digit numbers have at least one 2 and at least one 3?
Problem 8
Let be a segment of length , and let points and be located on such that and . Let and be points on one of the semicircles with diameter for which and are perpendicular to . Find
Problem 9
Two walls and the ceiling of a room meet at right angles at point A fly is in the air one meter from one wall, eight meters from the other wall, and nine meters from point . How many meters is the fly from the ceiling?
Problem 10
Let For how many in is it true that
Problem 11
Let be the th triangular number. Find
Problem 12
For how many positive integers is a prime number?
Problem 13
What is the maximum value of for which there is a set of distinct positive integers for which
Problem 14
Find
Problem 15
There are 1001 black marbles in a box. Let be the probability that two marbles drawn at random from the box are the same color, and let be the probability that they are different colors. Find
Problem 16
The altitudes of a triangle are and The largest angle in this triangle is
Problem 17
Let \text{(A) }\frac {1}{5} \qquad \text{(B) }\frac {1}{4} \qquad \text{(C) }\frac {5}{16} \qquad \text{(D) }\frac {3}{8} \qquad \text{(E) }\frac {1}{2} $[[2002 AMC 12P Problems/Problem 17|Solution]]
== Problem 18 ==
If$ (Error compiling LaTeX. Unknown error_msg)a,b,ca^2 + 2b =7b^2 + 4c= -7,c^2 + 6a= -14a^2 + b^2 + c^2.$$ (Error compiling LaTeX. Unknown error_msg) \text{(A) }14 \qquad \text{(B) }21 \qquad \text{(C) }28 \qquad \text{(D) }35 \qquad \text{(E) }49 $[[2002 AMC 12P Problems/Problem 18|Solution]]
== Problem 19 ==
In quadrilateral$ (Error compiling LaTeX. Unknown error_msg)ABCDm\angle B = m \angle C = 120^{\circ}, AB=3, BC=4, and CD=5.ABCD.$$ (Error compiling LaTeX. Unknown error_msg) \text{(A) }15 \qquad \text{(B) }9 \sqrt{3} \qquad \text{(C) }\frac{45 \sqrt{3}}{4} \qquad \text{(D) }\frac{47 \sqrt{3}}{4} \qquad \text{(E) }15 \sqrt{3} $[[2002 AMC 12P Problems/Problem 19|Solution]]
== Problem 20 ==
Points$ (Error compiling LaTeX. Unknown error_msg)A = (3,9)B = (1,1)C = (5,3)D=(a,b)ABCD\overline{AB}\overline{BC}\overline{CD}\overline{DA}D \text{(A) }7 \qquad \text{(B) }9 \qquad \text{(C) }10 \qquad \text{(D) }12 \qquad \text{(E) }16 $[[2002 AMC 12P Problems/Problem 20|Solution]]
== Problem 21 ==
Four positive integers$ (Error compiling LaTeX. Unknown error_msg)abcd8!$and satisfy:
<cmath> \begin{align*} ab + a + b & = 524 \\ bc + b + c & = 146 \\ cd + c + d & = 104 \end{align*} </cmath>
What is$ (Error compiling LaTeX. Unknown error_msg)a-d \text{(A) }4 \qquad \text{(B) }6 \qquad \text{(C) }8 \qquad \text{(D) }10 \qquad \text{(E) }12 $[[2001 AMC 12 Problems/Problem 21|Solution]]
== Problem 22 ==
In rectangle$ (Error compiling LaTeX. Unknown error_msg)ABCDFGABAF=FG=GBE\overline{DC}\overline{AC}\overline{EF}H\overline{EG}JABCD70EHJ \text{(A) }\frac {5}{2} \qquad \text{(B) }\frac {35}{12} \qquad \text{(C) }3 \qquad \text{(D) }\frac {7}{2} \qquad \text{(E) }\frac {35}{8} $[[2002 AMC 12P Problems/Problem 22|Solution]]
== Problem 23 ==
A polynomial of degree four with leading coefficient 1 and integer coefficients has two real zeros, both of which are integers. Which of the following can also be a zero of the polynomial?$ (Error compiling LaTeX. Unknown error_msg) \text{(A) }\frac {1 + i \sqrt {11}}{2} \qquad \text{(B) }\frac {1 + i}{2} \qquad \text{(C) }\frac {1}{2} + i \qquad \text{(D) }1 + \frac {i}{2} \qquad \text{(E) }\frac {1 + i \sqrt {13}}{2} $[[2002 AMC 12P Problems/Problem 23|Solution]]
== Problem 24 ==
In$ (Error compiling LaTeX. Unknown error_msg)\triangle ABC\angle ABC=45^\circD\overline{BC}2\cdot BD=CD\angle DAB=15^\circ\angle ACB \text{(A) }54^\circ \qquad \text{(B) }60^\circ \qquad \text{(C) }72^\circ \qquad \text{(D) }75^\circ \qquad \text{(E) }90^\circ $[[2002 AMC 12P Problems/Problem 24|Solution]]
== Problem 25 ==
Consider sequences of positive real numbers of the form$ (Error compiling LaTeX. Unknown error_msg)x, 2000, y, \dotsx \text{(A) }1 \qquad \text{(B) }2 \qquad \text{(C) }3 \qquad \text{(D) }4 \qquad \text{(E) more than }4 $
See also
2001 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by 2000 AMC 12 Problems |
Followed by 2002 AMC 12A Problems |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.