Difference between revisions of "2018 AMC 10A Problems/Problem 1"

(Video Solution (HOW TO THINK CREATIVELY!))
m (Video Solution (HOW TO THINK CREATIVELY!))
 
Line 19: Line 19:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
==Video Solution (Simplicity)==
 +
 +
https://www.youtube.com/watch?v=g0o4BbECwlk&t=16s
  
 
==Video Solution (HOW TO THINK CREATIVELY!)==
 
==Video Solution (HOW TO THINK CREATIVELY!)==
Line 24: Line 28:
  
 
~Education, the Study of Everything
 
~Education, the Study of Everything
 
==Video Solution (Simplicity)
 
https://www.youtube.com/watch?v=g0o4BbECwlk&t=16s
 
  
 
== Video Solutions ==
 
== Video Solutions ==

Latest revision as of 20:46, 26 December 2023

Problem

What is the value of \[\left(\left((2+1)^{-1}+1\right)^{-1}+1\right)^{-1}+1?\]

$\textbf{(A) } \frac58 \qquad \textbf{(B) }\frac{11}7 \qquad \textbf{(C) } \frac85 \qquad \textbf{(D) } \frac{18}{11} \qquad \textbf{(E) } \frac{15}8$

Solution

For all nonzero numbers $a,$ recall that $a^{-1}=\frac1a$ is the reciprocal of $a.$

The original expression becomes \begin{align*} \left(\left((2+1)^{-1}+1\right)^{-1}+1\right)^{-1}+1 &= \left(\left(3^{-1}+1\right)^{-1}+1\right)^{-1}+1 \\ &= \left(\left(\frac13+1\right)^{-1}+1\right)^{-1}+1 \\ &= \left(\left(\frac43\right)^{-1}+1\right)^{-1}+1 \\ &= \left(\frac34+1\right)^{-1}+1 \\ &= \left(\frac74\right)^{-1}+1 \\ &= \frac47+1 \\ &= \boxed{\textbf{(B) }\frac{11}7}. \end{align*} ~MRENTHUSIASM

Video Solution (Simplicity)

https://www.youtube.com/watch?v=g0o4BbECwlk&t=16s

Video Solution (HOW TO THINK CREATIVELY!)

https://youtu.be/19mpsCcQzY0

~Education, the Study of Everything

Video Solutions

https://youtu.be/vO-ELYmgRI8

https://youtu.be/cat3yTIpX4k

~savannahsolver

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png