Difference between revisions of "2022 SSMO Team Round Problems/Problem 10"

(Solution)
(Solution)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
By Vieta's relation we get, <math>\sum_{cyc}{}\alpha=2</math> <math>\sum_{cyc}{}\alpha\beta=0</math> and <math>\prod_{cyc}{}\alpha=4=\beta\gamma=\frac{4}{\alpha}</math>
+
By Vieta's relation we get, <math>\sum_{cyc}{}\alpha=2</math> <math>\sum_{cyc}{}\alpha\beta=0</math> and <math>\prod_{cyc}{}\alpha=4</math>
  
 
Therefore we have to find the value of <cmath>\prod_{cyc}{}(\alpha^3+\beta\gamma)=\prod_{cyc}{}\left(\alpha^3+\frac{4}{\alpha}\right)=\prod_{cyc}{}\left(\frac{\alpha^4+4}{\alpha}\right)</cmath>
 
Therefore we have to find the value of <cmath>\prod_{cyc}{}(\alpha^3+\beta\gamma)=\prod_{cyc}{}\left(\alpha^3+\frac{4}{\alpha}\right)=\prod_{cyc}{}\left(\frac{\alpha^4+4}{\alpha}\right)</cmath>
 
<cmath>\prod_{cyc}{}\left(\frac{\alpha^4+4}{\alpha}\right)=\frac{\prod_{cyc}{}(\alpha-(1+i))(\alpha-(1-i))(\alpha+(1-i))(\alpha+(1+i))}{\alpha\beta\gamma}</cmath>
 
<cmath>\prod_{cyc}{}\left(\frac{\alpha^4+4}{\alpha}\right)=\frac{\prod_{cyc}{}(\alpha-(1+i))(\alpha-(1-i))(\alpha+(1-i))(\alpha+(1+i))}{\alpha\beta\gamma}</cmath>

Revision as of 10:32, 25 December 2023

Problem

If $\alpha, \beta, \gamma$ are the roots of the polynomial $x^3-2x^2-4$, find \[(\alpha^3+\beta\gamma)(\beta^3+\gamma\alpha)(\gamma^3+\alpha\beta).\]

Solution

By Vieta's relation we get, $\sum_{cyc}{}\alpha=2$ $\sum_{cyc}{}\alpha\beta=0$ and $\prod_{cyc}{}\alpha=4$

Therefore we have to find the value of \[\prod_{cyc}{}(\alpha^3+\beta\gamma)=\prod_{cyc}{}\left(\alpha^3+\frac{4}{\alpha}\right)=\prod_{cyc}{}\left(\frac{\alpha^4+4}{\alpha}\right)\] \[\prod_{cyc}{}\left(\frac{\alpha^4+4}{\alpha}\right)=\frac{\prod_{cyc}{}(\alpha-(1+i))(\alpha-(1-i))(\alpha+(1-i))(\alpha+(1+i))}{\alpha\beta\gamma}\]