Difference between revisions of "2022 AMC 12A Problems/Problem 14"
Hithere22702 (talk | contribs) m (→Solution 2) |
(→Solution 3) |
||
Line 23: | Line 23: | ||
~kempwood | ~kempwood | ||
− | ==Solution 3== | + | ==Solution 3 (Estimates)== |
We can estimate the solution. Using <math>\log(2) \approx 0.3, \log(20) = \log(10)+\log(2) = 1 + 0.3 \approx 1.3, \log(8) \approx 0.9</math> and <math>\log(.25) = \log(1)-\log(4)= 0 - 0.6\approx -0.6,</math> we have | We can estimate the solution. Using <math>\log(2) \approx 0.3, \log(20) = \log(10)+\log(2) = 1 + 0.3 \approx 1.3, \log(8) \approx 0.9</math> and <math>\log(.25) = \log(1)-\log(4)= 0 - 0.6\approx -0.6,</math> we have |
Revision as of 18:45, 22 September 2024
Contents
Problem
What is the value of where denotes the base-ten logarithm?
Solution 1
Let . The expression then becomes
-bluelinfish
Solution 2
Using sum of cubes Let x = and y = , so
The entire expression becomes
~kempwood
Solution 3 (Estimates)
We can estimate the solution. Using and we have
~kxiang
Solution 4(log bash)
Using log properties, we combine the terms to make our expression equal to . By exponent properties, we separate the part with base to become . Then, we substitute this into the original expression to get . Because , and , this expression is equal to . We perform the step with the base combining on and to get . Putting this back into the whole equation gives . One last base merge remains - but isn't a power of 10. We can rectify this by converting to . Finally, we complete this arduous process by performing the base merge on . We get . Putting this back into that original equation one last time, we get . ~aop2014
Video Solution (Speedy)
https://www.youtube.com/watch?v=pai2A9FXI9U
~Education, the Study of Everything
Video Solution (Simple)
https://youtu.be/7yAh4MtJ8a8?si=9vbP5erdxlCLlG82&t=2957
~Math-x
See Also
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.