Difference between revisions of "1992 OIM Problems/Problem 2"
Line 33: | Line 33: | ||
From properties of polynomials, we know that the sum of the roots of a polynomial of degree n is <math>-b/a</math> where <math>b</math> is the coefficient of <math>x^{n-1}</math> and <math>a</math> is the coefficient of <math>x^n</math> | From properties of polynomials, we know that the sum of the roots of a polynomial of degree n is <math>-b/a</math> where <math>b</math> is the coefficient of <math>x^{n-1}</math> and <math>a</math> is the coefficient of <math>x^n</math> | ||
− | Therefore, <math>\sum{i}{}r_i=-0/1=0</math> | + | Therefore, <math>\sum{i}^{}r_i=-0/1=0</math> |
* Note. I actually competed at this event in Venezuela when I was in High School representing Puerto Rico. I got a ZERO on this one because I didn't even know what was I supposed to do, nor did I know what the sum of the lengths of the intervals, disjoint two by two meant. A decade ago I finally solved it but now I don't remember how. I will attempt to solve this one later. | * Note. I actually competed at this event in Venezuela when I was in High School representing Puerto Rico. I got a ZERO on this one because I didn't even know what was I supposed to do, nor did I know what the sum of the lengths of the intervals, disjoint two by two meant. A decade ago I finally solved it but now I don't remember how. I will attempt to solve this one later. |
Revision as of 11:35, 17 December 2023
Problem
Given the collection of positive real numbers and the function:
Determine the sum of the lengths of the intervals, disjoint two by two, formed by all .
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
Solution
Since , we can plot to visualize what we're looking for:
Notice that the intervals will be:
Thus the sum of the intervals will be:
Now we set :
And solve for zero:
From properties of polynomials, we know that the sum of the roots of a polynomial of degree n is where is the coefficient of and is the coefficient of
Therefore,
- Note. I actually competed at this event in Venezuela when I was in High School representing Puerto Rico. I got a ZERO on this one because I didn't even know what was I supposed to do, nor did I know what the sum of the lengths of the intervals, disjoint two by two meant. A decade ago I finally solved it but now I don't remember how. I will attempt to solve this one later.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.