Difference between revisions of "1992 OIM Problems/Problem 1"
Line 22: | Line 22: | ||
<math>a_{20k+p}=\frac{p(p+1)}{2} \text{ mod } 10 = a_p</math> | <math>a_{20k+p}=\frac{p(p+1)}{2} \text{ mod } 10 = a_p</math> | ||
+ | Let <math>S_n=a_1 + a_2 + a_3 + \cdots + a_n</math> | ||
+ | |||
+ | Since <math>a_{20k+p}=a_p</math> | ||
+ | |||
+ | then, <math>S_{20k+p}=k\sum_{i=1}^{20}a_i+\sum_{i=1}^{p}a_i</math> | ||
− | + | &\begin{cases} | |
+ | a_1=\frac{(1)(2)}{2}\text{ mod }10=1\text{ mod }10=1\\ | ||
+ | a_2=\frac{(2)(3)}{2}\text{ mod }10=3\text{ mod }10=3\\ | ||
+ | a_3=\frac{(3)(4)}{2}\text{ mod }10=6\text{ mod }10=6\\ | ||
+ | a_4=\frac{(4)(5)}{2}\text{ mod }10=10\text{ mod }10=0\\ | ||
+ | a_5=\frac{(5)(6)}{2}\text{ mod }10=15\text{ mod }10=5\\ | ||
+ | a_6=\frac{(6)(7)}{2}\text{ mod }10=21\text{ mod }10=1\\ | ||
+ | a_7=\frac{(7)(8)}{2}\text{ mod }10=28\text{ mod }10=8\\ | ||
+ | a_8=\frac{(8)(9)}{2}\text{ mod }10=36\text{ mod }10=6\\ | ||
+ | a_9=\frac{(9)(10)}{2}\text{ mod }10=45\text{ mod }10=5\\ | ||
+ | a_10=\frac{(10)(11)}{2}\text{ mod }10=55\text{ mod }10=5\\ | ||
+ | a_11=\frac{(11)(12)}{2}\text{ mod }10=66\text{ mod }10=6\\ | ||
+ | a_12=\frac{(12)(13)}{2}\text{ mod }10=78\text{ mod }10=8\\ | ||
+ | a_13=\frac{(13)(14)}{2}\text{ mod }10=91\text{ mod }10=1\\ | ||
+ | a_14=\frac{(14)(15)}{2}\text{ mod }10=105\text{ mod }10=5\\ | ||
+ | a_15=\frac{(15)(16)}{2}\text{ mod }10=120\text{ mod }10=0\\ | ||
+ | a_16=\frac{(16)(17)}{2}\text{ mod }10=136\text{ mod }10=6\\ | ||
+ | a_17=\frac{(17)(18)}{2}\text{ mod }10=153\text{ mod }10=3\\ | ||
+ | a_18=\frac{(18)(19)}{2}\text{ mod }10=171\text{ mod }10=1\\ | ||
+ | a_19=\frac{(19)(20)}{2}\text{ mod }10=190\text{ mod }10=0\\ | ||
+ | a_20=\frac{(20)(21)}{2}\text{ mod }10=210\text{ mod }10=0 | ||
+ | \end{cases}$ | ||
Revision as of 23:39, 13 December 2023
Problem
For each positive integer , let be the last digit of the number. . Calculate .
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
Solution
Let and be integers with , and
Since , then
Let
Since
then,
&\begin{cases} a_1=\frac{(1)(2)}{2}\text{ mod }10=1\text{ mod }10=1\\ a_2=\frac{(2)(3)}{2}\text{ mod }10=3\text{ mod }10=3\\ a_3=\frac{(3)(4)}{2}\text{ mod }10=6\text{ mod }10=6\\ a_4=\frac{(4)(5)}{2}\text{ mod }10=10\text{ mod }10=0\\ a_5=\frac{(5)(6)}{2}\text{ mod }10=15\text{ mod }10=5\\ a_6=\frac{(6)(7)}{2}\text{ mod }10=21\text{ mod }10=1\\ a_7=\frac{(7)(8)}{2}\text{ mod }10=28\text{ mod }10=8\\ a_8=\frac{(8)(9)}{2}\text{ mod }10=36\text{ mod }10=6\\ a_9=\frac{(9)(10)}{2}\text{ mod }10=45\text{ mod }10=5\\ a_10=\frac{(10)(11)}{2}\text{ mod }10=55\text{ mod }10=5\\ a_11=\frac{(11)(12)}{2}\text{ mod }10=66\text{ mod }10=6\\ a_12=\frac{(12)(13)}{2}\text{ mod }10=78\text{ mod }10=8\\ a_13=\frac{(13)(14)}{2}\text{ mod }10=91\text{ mod }10=1\\ a_14=\frac{(14)(15)}{2}\text{ mod }10=105\text{ mod }10=5\\ a_15=\frac{(15)(16)}{2}\text{ mod }10=120\text{ mod }10=0\\ a_16=\frac{(16)(17)}{2}\text{ mod }10=136\text{ mod }10=6\\ a_17=\frac{(17)(18)}{2}\text{ mod }10=153\text{ mod }10=3\\ a_18=\frac{(18)(19)}{2}\text{ mod }10=171\text{ mod }10=1\\ a_19=\frac{(19)(20)}{2}\text{ mod }10=190\text{ mod }10=0\\ a_20=\frac{(20)(21)}{2}\text{ mod }10=210\text{ mod }10=0 \end{cases}$
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.