Difference between revisions of "1992 OIM Problems/Problem 1"

Line 7: Line 7:
  
 
<math>a_n=\frac{n(n+1)}{2}\text{ mod } 10</math>  
 
<math>a_n=\frac{n(n+1)}{2}\text{ mod } 10</math>  
 +
 +
Let <math>k</math> and <math>p</math> be integers with <math>k \ge 0</math>, and <math>1 \le p \le 20</math>
 +
 +
<math>a_{20k+p}=\frac{(20k+p)(20k+p+1)}{2}\text{ mod } 10</math>
 +
 +
<math>a_{20k+p}=\frac{20k^2+20k(p+1)+20kp+p(p+1)}{2}\text{ mod } 10</math>
 +
 +
  
 
Let <math>S_n=a_1 + a_2 + a_3 + \cdots + a_n</math>
 
Let <math>S_n=a_1 + a_2 + a_3 + \cdots + a_n</math>
  
Let <math>k</math> be an integer and <math>p</math> be
+
 
  
 
{{alternate solutions}}
 
{{alternate solutions}}

Revision as of 23:26, 13 December 2023

Problem

For each positive integer $n$, let $a_n$ be the last digit of the number. $1+2+3+\cdots +n$. Calculate $a_1 + a_2 + a_3 + \cdots + a_{1992}$.

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

$a_n=\frac{n(n+1)}{2}\text{ mod } 10$

Let $k$ and $p$ be integers with $k \ge 0$, and $1 \le p \le 20$

$a_{20k+p}=\frac{(20k+p)(20k+p+1)}{2}\text{ mod } 10$

$a_{20k+p}=\frac{20k^2+20k(p+1)+20kp+p(p+1)}{2}\text{ mod } 10$


Let $S_n=a_1 + a_2 + a_3 + \cdots + a_n$


Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See also

https://www.oma.org.ar/enunciados/ibe7.htm