Difference between revisions of "2024 AIME I Problems/Problem 7"
Math is fun (talk | contribs) (Blanked the page) (Tag: Blanking) |
Technodoggo (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | Let <math>z=a+bi</math> such that <math>a^2+b^2=4^2=16</math>. The expression becomes: | ||
+ | <cmath>(75+117i)(a+bi)+\dfrac{96+144i}{a+bi}.</cmath> | ||
+ | |||
+ | Call this complex number <math>w</math>. We simplify this expression. | ||
+ | |||
+ | \begin{align*} | ||
+ | w&=(75+117i)(a+bi)+\dfrac{96+144i}{a+bi} \\ | ||
+ | &=(75a-117b)+(117a+75b)i+48\left(\dfrac{2+3i}{a+bi}\right) \\ | ||
+ | &=(75a-117b)+(116a+75b)i+48\left(\dfrac{(2+3i)(a-bi)}{(a+bi)(a-bi)}\right) \\ | ||
+ | &=(75a-117b)+(116a+75b)i+48\left(\dfrac{2a+3b+(3a-2b)i}{a^2+b^2}\right) \\ | ||
+ | &=(75a-117b)+(116a+75b)i+48\left(\dfrac{2a+3b+(3a-2b)i}{16}\right) \\ | ||
+ | &=(75a-117b)+(116a+75b)i+3\left(2a+3b+(3a-2b)i\right) \\ | ||
+ | &=(75a-117b)+(116a+75b)i+6a+9b+(9a-6b)i \\ | ||
+ | &=(81a-108b)+(125a+69b)i. \\ | ||
+ | \end{align*} | ||
+ | |||
+ | We want to maximize <math>\text{Re}(w)=81a-108b</math>. We can use elementary calculus for this, but to do so, we must put the expression in terms of one variable. Recall that <math>a^2+b^2=16</math>; thus, <math>b=\pm\sqrt{16-a^2}</math>. Notice that we have a <math>-108b</math> in the expression; to maximize the expression, we want <math>b</math> to be negative so that <math>-108b</math> is positive and thus contributes more to the expression. We thus let <math>b=-\sqrt{16-a^2}</math>. Let <math>f(a)=81a-108b</math>. We now know that <math>f(a)=81a+108\sqrt{16-a^2}</math>, and can proceed with normal calculus. | ||
+ | |||
+ | \begin{align*} | ||
+ | f(a)&=81a+108\sqrt{16-a^2} \\ | ||
+ | &=27\left(3a+4\sqrt{16-a^2}\right) \\ | ||
+ | f'(a)&=27\left(3a+4\sqrt{16-a^2}\right)' \\ | ||
+ | &=27\left(3+4\left(\sqrt{16-a^2}\right)'\right) \\ | ||
+ | &=27\left(3+4\left(\dfrac{-2a}{2\sqrt{16-a^2}}\right)\right) \\ | ||
+ | &=27\left(3-4\left(\dfrac a{\sqrt{16-a^2}}\right)\right) \\ | ||
+ | &=27\left(3-\dfrac{4a}{\sqrt{16-a^2}}\right). \\ | ||
+ | \end{align*} | ||
+ | |||
+ | We want <math>f'(a)</math> to be <math>0</math> to find the maximum. | ||
+ | |||
+ | \begin{align*} | ||
+ | 0&=27\left(3-\dfrac{4a}{\sqrt{16-a^2}}\right) \\ | ||
+ | &=3-\dfrac{4a}{\sqrt{16-a^2}} \\ | ||
+ | 3&=\dfrac{4a}{\sqrt{16-a^2}} \\ | ||
+ | 4a&=3\sqrt{16-a^2} \\ | ||
+ | 16a^2&=9\left(16-a^2\right) \\ | ||
+ | 16a^2&=144-9a^2 \\ | ||
+ | 25a^2&=144 \\ | ||
+ | a^2&=\dfrac{144}{25} \\ | ||
+ | a&=\dfrac{12}5 \\ | ||
+ | &=2.4. \\ | ||
+ | \end{align*} | ||
+ | |||
+ | We also find that <math>b=-\sqrt{16-2.4^2}=-\sqrt{16-5.76}=-\sqrt{10.24}=-3.2</math>. | ||
+ | |||
+ | Thus, the expression we wanted to maximize becomes <math>81\cdot2.4-108(-3.2)=81\cdot2.4+108\cdot3.2=\boxed{540}</math>. | ||
+ | |||
+ | ~Technodoggo |
Revision as of 12:39, 2 February 2024
Let such that . The expression becomes:
Call this complex number . We simplify this expression.
\begin{align*} w&=(75+117i)(a+bi)+\dfrac{96+144i}{a+bi} \\ &=(75a-117b)+(117a+75b)i+48\left(\dfrac{2+3i}{a+bi}\right) \\ &=(75a-117b)+(116a+75b)i+48\left(\dfrac{(2+3i)(a-bi)}{(a+bi)(a-bi)}\right) \\ &=(75a-117b)+(116a+75b)i+48\left(\dfrac{2a+3b+(3a-2b)i}{a^2+b^2}\right) \\ &=(75a-117b)+(116a+75b)i+48\left(\dfrac{2a+3b+(3a-2b)i}{16}\right) \\ &=(75a-117b)+(116a+75b)i+3\left(2a+3b+(3a-2b)i\right) \\ &=(75a-117b)+(116a+75b)i+6a+9b+(9a-6b)i \\ &=(81a-108b)+(125a+69b)i. \\ \end{align*}
We want to maximize . We can use elementary calculus for this, but to do so, we must put the expression in terms of one variable. Recall that ; thus, . Notice that we have a in the expression; to maximize the expression, we want to be negative so that is positive and thus contributes more to the expression. We thus let . Let . We now know that , and can proceed with normal calculus.
\begin{align*} f(a)&=81a+108\sqrt{16-a^2} \\ &=27\left(3a+4\sqrt{16-a^2}\right) \\ f'(a)&=27\left(3a+4\sqrt{16-a^2}\right)' \\ &=27\left(3+4\left(\sqrt{16-a^2}\right)'\right) \\ &=27\left(3+4\left(\dfrac{-2a}{2\sqrt{16-a^2}}\right)\right) \\ &=27\left(3-4\left(\dfrac a{\sqrt{16-a^2}}\right)\right) \\ &=27\left(3-\dfrac{4a}{\sqrt{16-a^2}}\right). \\ \end{align*}
We want to be to find the maximum.
\begin{align*} 0&=27\left(3-\dfrac{4a}{\sqrt{16-a^2}}\right) \\ &=3-\dfrac{4a}{\sqrt{16-a^2}} \\ 3&=\dfrac{4a}{\sqrt{16-a^2}} \\ 4a&=3\sqrt{16-a^2} \\ 16a^2&=9\left(16-a^2\right) \\ 16a^2&=144-9a^2 \\ 25a^2&=144 \\ a^2&=\dfrac{144}{25} \\ a&=\dfrac{12}5 \\ &=2.4. \\ \end{align*}
We also find that .
Thus, the expression we wanted to maximize becomes .
~Technodoggo