Difference between revisions of "Complex conjugate"

(Properties)
Line 6: Line 6:
 
Conjugation is its own [[Function/Introduction#The_Inverse_of_a_Function | functional inverse]] and [[commutative property | commutes]] with the usual [[operation]]s on complex numbers:
 
Conjugation is its own [[Function/Introduction#The_Inverse_of_a_Function | functional inverse]] and [[commutative property | commutes]] with the usual [[operation]]s on complex numbers:
 
* <math>\overline{(\overline z)} = z</math>
 
* <math>\overline{(\overline z)} = z</math>
* <math>\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}</math>
+
* <math>\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}</math> (<math>\overline{(w \cdot z)}</math> is the same as <math>\overline{(w \cdot \frac{1}{z})})
* <math>\overline{(w + z)} = \overline{w} + \overline{z}</math>
+
* </math>\overline{(w + z)} = \overline{w} + \overline{z}<math> (</math>\overline{(w + z)}<math> is the same as </math>\overline{(w + (-z))})
 
It also interacts in simple ways with other operations on <math>\mathbb{C}</math>:
 
It also interacts in simple ways with other operations on <math>\mathbb{C}</math>:
 
* <math>|\overline{z}| = |z|</math>
 
* <math>|\overline{z}| = |z|</math>

Revision as of 09:57, 4 December 2007

The complex conjugate of a complex number $z = a + bi$ is the complex number $\overline{z} = a - bi$.

Geometrically, if $z$ is a point in the complex plane, $\overline z$ is the reflection of $z$ across the real axis.

Properties

Conjugation is its own functional inverse and commutes with the usual operations on complex numbers:

  • $\overline{(\overline z)} = z$
  • $\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}$ ($\overline{(w \cdot z)}$ is the same as $\overline{(w \cdot \frac{1}{z})}) *$\overline{(w + z)} = \overline{w} + \overline{z}$($\overline{(w + z)}$is the same as$\overline{(w + (-z))})

It also interacts in simple ways with other operations on $\mathbb{C}$:


This article is a stub. Help us out by expanding it.