Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 10"
Line 14: | Line 14: | ||
<math>P_r=\begin{pmatrix} 2000-k \\ k \end{pmatrix}</math> | <math>P_r=\begin{pmatrix} 2000-k \\ k \end{pmatrix}</math> | ||
+ | |||
+ | Let's write <math>P_n</math> in matrix form as: | ||
+ | |||
+ | <math>P_n=\begin{pmatrix} P_{x_n} \\ P_{y_n} \end{pmatrix}</math> | ||
<math>P_{n+1}=R(P_n-P_r)+P_r=\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} P_{x_n}-(2000-k) \\ P_{y_n}-k \end{pmatrix}+\begin{pmatrix} 2000-k \\ k \end{pmatrix}</math> | <math>P_{n+1}=R(P_n-P_r)+P_r=\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} P_{x_n}-(2000-k) \\ P_{y_n}-k \end{pmatrix}+\begin{pmatrix} 2000-k \\ k \end{pmatrix}</math> |
Revision as of 14:08, 25 November 2023
Problem
Given a point in the coordinate plane, let be the rotation of around the point . Let be the point and for all integers . If has a -coordinate of , what is ?
Solution
Let be the rotational matrix for a point along the origin:
For
Let be the point of rotation.
Let's write in matrix form as:
~Tomas Diaz. orders@tomasdiaz.com