Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 5"
Line 122: | Line 122: | ||
When <math>a=9</math>, <math>0 \le b^2-b+2</math>, which gives: <math>b \ge 0</math>. Total possible <math>n</math>'s: 10 | When <math>a=9</math>, <math>0 \le b^2-b+2</math>, which gives: <math>b \ge 0</math>. Total possible <math>n</math>'s: 10 | ||
− | No valid <math>n</math> for <math>2100 le n le 2109</math> | + | No valid <math>n</math> for <math>2100 \le n \le 2109</math> |
Therefore, the total number of possible <math>n</math>'s is: <math>2+10+7+6+5+5+5+6+7+10=\boxed{63}</math> | Therefore, the total number of possible <math>n</math>'s is: <math>2+10+7+6+5+5+5+6+7+10=\boxed{63}</math> | ||
− | .. | + | ~Tomas Diaz. orders@tomasdiaz.com |
− | + | {{alternate solutions}} |
Revision as of 16:03, 24 November 2023
Problem
Let be the sum of the squares of the digits of . How many positive integers satisfy the inequality ?
Solution
We start by rearranging the inequality the following way:
and compare the possible values for the left hand side and the right hand side of this inequality.
Case 1: has 5 digits or more.
Let = number of digits of n.
Then as a function of d,
, and
, and
when ,
Since for , then and there is no possible when has 5 or more digits.
Case 2: has 4 digits and
, and
, and
Since , then and there is no possible when has 4 digits and .
Case 3:
Let be the 2nd digit of
, and
, and
At , .
At , .
At , .
At , .
At , .
At , .
At , .
At , .
Since , for , then and there is no possible when when combined with the previous cases.
NOTE... case 4 is wrong. Need to rewrite it
Case 4:
Let be the 3rd digit of
, and
, and
At , .
At , .
At , .
At , .
At , .
At , .
At , .
At , .
At , .
Since , for , then and there is no possible when when combined with the previous cases.
Case 5: Here we need to try each case from n=2008 to n=2109
Let and be the 3rd and 4th digits of n respectively.
;
Solving the inequality we have:
When , , which gives: . Which is and Total possible 's: 2
When , , which gives: . Total possible 's: 10
When , , which gives: . Total possible 's: 7
When , , which gives: . Total possible 's: 6
When , , which gives: . Total possible 's: 5
When , , which gives: . Total possible 's: 5
When , , which gives: . Total possible 's: 5
When , , which gives: . Total possible 's: 6
When , , which gives: . Total possible 's: 7
When , , which gives: . Total possible 's: 10
No valid for
Therefore, the total number of possible 's is:
~Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.