Difference between revisions of "2006 AIME II Problems/Problem 12"

(Asymptote)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
[[Equilateral triangle | Equilateral]] <math> \triangle ABC </math> is inscribed in a [[circle]] of [[radius]] 2. Extend <math> \overline{AB} </math> through <math> B </math> to point <math> D </math> so that <math> AD=13, </math> and extend <math> \overline{AC} </math> through <math> C </math> to point <math> E </math> so that <math> AE = 11. </math> Through <math> D, </math> draw a line <math> l_1 </math> [[parallel]] to <math> \overline{AE}, </math> and through <math> E, </math> draw a line <math> l_2 </math> parallel to <math> \overline{AD}. </math> Let <math> F </math> be the [[intersection]] of <math> l_1 </math> and <math> l_2. </math> Let <math> G </math> be the point on the circle that is [[collinear]] with <math> A </math> and <math> F </math> and distinct from <math> A. </math> Given that the [[area]] of <math> \triangle CBG </math> can be expressed in the form <math> \frac{p\sqrt{q}}{r}, </math>  where <math> p, q, </math> and <math> r </math> are [[positive integer]]s, <math> p </math> and <math> r</math>  are [[relatively prime]], and <math> q </math> is not [[divisibility | divisible]] by the [[perfect square | square]] of any [[prime]], find <math> p+q+r. </math>
+
[[Equilateral triangle | Equilateral]] <math> \triangle ABC </math> is inscribed in a [[circle]] of [[radius]] <math>2</math>. Extend <math> \overline{AB} </math> through <math> B </math> to point <math> D </math> so that <math> AD=13, </math> and extend <math> \overline{AC} </math> through <math> C </math> to point <math> E </math> so that <math> AE = 11. </math> Through <math> D, </math> draw a line <math> l_1 </math> [[parallel]] to <math> \overline{AE}, </math> and through <math> E, </math> draw a line <math> l_2 </math> parallel to <math> \overline{AD}. </math> Let <math> F </math> be the intersection of <math> l_1 </math> and <math> l_2. </math> Let <math> G </math> be the point on the circle that is [[collinear]] with <math> A </math> and <math> F </math> and distinct from <math> A. </math> Given that the area of <math> \triangle CBG </math> can be expressed in the form <math> \frac{p\sqrt{q}}{r}, </math>  where <math> p, q, </math> and <math> r </math> are positive integers, <math> p </math> and <math> r</math>  are [[relatively prime]], and <math> q </math> is not [[divisibility | divisible]] by the [[perfect square | square]] of any prime, find <math> p+q+r. </math>
<center>[[Image:Aime2006-2-11.JPG]]</center>
 
  
 
== Solution ==
 
== Solution ==
Notice that <math>\angle{E} = \angle{BGC} = 120^\circ</math> because <math>\angle{A} = 60^\circ</math>. Also, <math>\angle{GBC} = \angle{GAC} = \angle{FAE}</math> because they both correspond to arc <math>{GC}</math>. So <math>\Delta{GBC}</math>~<math>\Delta{EAF}</math>.
+
<center><asy>
 +
size(250); pointpen = black; pathpen = black + linewidth(0.65); pen s = fontsize(8);
 +
pair A=(0,0),B=(-3^.5,-3),C=(3^.5,-3),D=13*expi(-2*pi/3),E1=11*expi(-pi/3),F=E1+D;
 +
path O = CP((0,-2),A); pair G = OP(A--F,O);
 +
D(MP("A",A,N,s)--MP("B",B,W,s)--MP("C",C,E,s)--cycle);D(O);
 +
D(B--MP("D",D,W,s)--MP("F",F,s)--MP("E",E1,E,s)--C);
 +
D(A--F);D(B--MP("G",G,SW,s)--C);
 +
MP("11",(A+E1)/2,NE);MP("13",(A+D)/2,NW);MP("l_1",(D+F)/2,SW);MP("l_2",(E1+F)/2,SE);
 +
</asy></center><!-- Asymptote replacement for Image:Aime2006-2-11.JPG]]-->
 +
Notice that <math>\angle{E} = \angle{BGC} = 120^\circ</math> because <math>\angle{A} = 60^\circ</math>. Also, <math>\angle{GBC} = \angle{GAC} = \angle{FAE}</math> because they both correspond to arc <math>{GC}</math>. So <math>\Delta{GBC} \sim \Delta{EAF}</math>.
  
<math>[EAF] = \frac12\cdot11\cdot13\cdot\sin{120^\circ} = \frac {143\sqrt3}4</math>.
+
<cmath>[EAF] = \frac12 (AE)(EF)\sin \angle AEF  = \frac12\cdot11\cdot13\cdot\sin{120^\circ} = \frac {143\sqrt3}4.</cmath>
  
<math>[GBC] = \frac {BC^2}{AF^2}\cdot[EAF] = \frac {12}{11^2 + 13^2 - 2\cdot11\cdot13\cdot\cos120^\circ}\cdot\frac {143\sqrt3}4 = \frac {429\sqrt3}{433}</math>.  
+
Because the ratio of the area of two similar figures is the square of the ratio of the corresponding sides, <math>[GBC] = \frac {BC^2}{AF^2}\cdot[EAF] = \frac {12}{11^2 + 13^2 - 2\cdot11\cdot13\cdot\cos120^\circ}\cdot\frac {143\sqrt3}4 = \frac {429\sqrt3}{433}</math>. Therefore, the answer is <math>429+433+3=\boxed{865}</math>.
 
 
<math>429+433+3=\boxed{865}</math>
 
  
 
== See also ==
 
== See also ==

Revision as of 13:58, 26 April 2008

Problem

Equilateral $\triangle ABC$ is inscribed in a circle of radius $2$. Extend $\overline{AB}$ through $B$ to point $D$ so that $AD=13,$ and extend $\overline{AC}$ through $C$ to point $E$ so that $AE = 11.$ Through $D,$ draw a line $l_1$ parallel to $\overline{AE},$ and through $E,$ draw a line $l_2$ parallel to $\overline{AD}.$ Let $F$ be the intersection of $l_1$ and $l_2.$ Let $G$ be the point on the circle that is collinear with $A$ and $F$ and distinct from $A.$ Given that the area of $\triangle CBG$ can be expressed in the form $\frac{p\sqrt{q}}{r},$ where $p, q,$ and $r$ are positive integers, $p$ and $r$ are relatively prime, and $q$ is not divisible by the square of any prime, find $p+q+r.$

Solution

[asy] size(250); pointpen = black; pathpen = black + linewidth(0.65); pen s = fontsize(8); pair A=(0,0),B=(-3^.5,-3),C=(3^.5,-3),D=13*expi(-2*pi/3),E1=11*expi(-pi/3),F=E1+D; path O = CP((0,-2),A); pair G = OP(A--F,O); D(MP("A",A,N,s)--MP("B",B,W,s)--MP("C",C,E,s)--cycle);D(O); D(B--MP("D",D,W,s)--MP("F",F,s)--MP("E",E1,E,s)--C); D(A--F);D(B--MP("G",G,SW,s)--C); MP("11",(A+E1)/2,NE);MP("13",(A+D)/2,NW);MP("l_1",(D+F)/2,SW);MP("l_2",(E1+F)/2,SE); [/asy]

Notice that $\angle{E} = \angle{BGC} = 120^\circ$ because $\angle{A} = 60^\circ$. Also, $\angle{GBC} = \angle{GAC} = \angle{FAE}$ because they both correspond to arc ${GC}$. So $\Delta{GBC} \sim \Delta{EAF}$.

\[[EAF] = \frac12 (AE)(EF)\sin \angle AEF  = \frac12\cdot11\cdot13\cdot\sin{120^\circ} = \frac {143\sqrt3}4.\]

Because the ratio of the area of two similar figures is the square of the ratio of the corresponding sides, $[GBC] = \frac {BC^2}{AF^2}\cdot[EAF] = \frac {12}{11^2 + 13^2 - 2\cdot11\cdot13\cdot\cos120^\circ}\cdot\frac {143\sqrt3}4 = \frac {429\sqrt3}{433}$. Therefore, the answer is $429+433+3=\boxed{865}$.

See also

2006 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions