Difference between revisions of "2006 AIME II Problems/Problem 12"
(Asymptote) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | [[Equilateral triangle | Equilateral]] <math> \triangle ABC </math> is inscribed in a [[circle]] of [[radius]] 2. Extend <math> \overline{AB} </math> through <math> B </math> to point <math> D </math> so that <math> AD=13, </math> and extend <math> \overline{AC} </math> through <math> C </math> to point <math> E </math> so that <math> AE = 11. </math> Through <math> D, </math> draw a line <math> l_1 </math> [[parallel]] to <math> \overline{AE}, </math> and through <math> E, </math> draw a line <math> l_2 </math> parallel to <math> \overline{AD}. </math> Let <math> F </math> be the | + | [[Equilateral triangle | Equilateral]] <math> \triangle ABC </math> is inscribed in a [[circle]] of [[radius]] <math>2</math>. Extend <math> \overline{AB} </math> through <math> B </math> to point <math> D </math> so that <math> AD=13, </math> and extend <math> \overline{AC} </math> through <math> C </math> to point <math> E </math> so that <math> AE = 11. </math> Through <math> D, </math> draw a line <math> l_1 </math> [[parallel]] to <math> \overline{AE}, </math> and through <math> E, </math> draw a line <math> l_2 </math> parallel to <math> \overline{AD}. </math> Let <math> F </math> be the intersection of <math> l_1 </math> and <math> l_2. </math> Let <math> G </math> be the point on the circle that is [[collinear]] with <math> A </math> and <math> F </math> and distinct from <math> A. </math> Given that the area of <math> \triangle CBG </math> can be expressed in the form <math> \frac{p\sqrt{q}}{r}, </math> where <math> p, q, </math> and <math> r </math> are positive integers, <math> p </math> and <math> r</math> are [[relatively prime]], and <math> q </math> is not [[divisibility | divisible]] by the [[perfect square | square]] of any prime, find <math> p+q+r. </math> |
− | |||
== Solution == | == Solution == | ||
− | Notice that <math>\angle{E} = \angle{BGC} = 120^\circ</math> because <math>\angle{A} = 60^\circ</math>. Also, <math>\angle{GBC} = \angle{GAC} = \angle{FAE}</math> because they both correspond to arc <math>{GC}</math>. So <math>\Delta{GBC} | + | <center><asy> |
+ | size(250); pointpen = black; pathpen = black + linewidth(0.65); pen s = fontsize(8); | ||
+ | pair A=(0,0),B=(-3^.5,-3),C=(3^.5,-3),D=13*expi(-2*pi/3),E1=11*expi(-pi/3),F=E1+D; | ||
+ | path O = CP((0,-2),A); pair G = OP(A--F,O); | ||
+ | D(MP("A",A,N,s)--MP("B",B,W,s)--MP("C",C,E,s)--cycle);D(O); | ||
+ | D(B--MP("D",D,W,s)--MP("F",F,s)--MP("E",E1,E,s)--C); | ||
+ | D(A--F);D(B--MP("G",G,SW,s)--C); | ||
+ | MP("11",(A+E1)/2,NE);MP("13",(A+D)/2,NW);MP("l_1",(D+F)/2,SW);MP("l_2",(E1+F)/2,SE); | ||
+ | </asy></center><!-- Asymptote replacement for Image:Aime2006-2-11.JPG]]--> | ||
+ | Notice that <math>\angle{E} = \angle{BGC} = 120^\circ</math> because <math>\angle{A} = 60^\circ</math>. Also, <math>\angle{GBC} = \angle{GAC} = \angle{FAE}</math> because they both correspond to arc <math>{GC}</math>. So <math>\Delta{GBC} \sim \Delta{EAF}</math>. | ||
− | < | + | <cmath>[EAF] = \frac12 (AE)(EF)\sin \angle AEF = \frac12\cdot11\cdot13\cdot\sin{120^\circ} = \frac {143\sqrt3}4.</cmath> |
− | <math>[GBC] = \frac {BC^2}{AF^2}\cdot[EAF] = \frac {12}{11^2 + 13^2 - 2\cdot11\cdot13\cdot\cos120^\circ}\cdot\frac {143\sqrt3}4 = \frac {429\sqrt3}{433}</math>. | + | Because the ratio of the area of two similar figures is the square of the ratio of the corresponding sides, <math>[GBC] = \frac {BC^2}{AF^2}\cdot[EAF] = \frac {12}{11^2 + 13^2 - 2\cdot11\cdot13\cdot\cos120^\circ}\cdot\frac {143\sqrt3}4 = \frac {429\sqrt3}{433}</math>. Therefore, the answer is <math>429+433+3=\boxed{865}</math>. |
− | |||
− | <math>429+433+3=\boxed{865}</math> | ||
== See also == | == See also == |
Revision as of 13:58, 26 April 2008
Problem
Equilateral is inscribed in a circle of radius . Extend through to point so that and extend through to point so that Through draw a line parallel to and through draw a line parallel to Let be the intersection of and Let be the point on the circle that is collinear with and and distinct from Given that the area of can be expressed in the form where and are positive integers, and are relatively prime, and is not divisible by the square of any prime, find
Solution
Notice that because . Also, because they both correspond to arc . So .
Because the ratio of the area of two similar figures is the square of the ratio of the corresponding sides, . Therefore, the answer is .
See also
2006 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |