Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 5"

(Created page with "==Problem== Let <math>S(n)</math> be the sum of the squares of the digits of <math>n</math>. How many positive integers <math>n>2007</math> satisfy the inequality <math>n-S(n...")
 
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
{{Solution}}
+
We start by rearranging the inequality the following way:
 +
 
 +
<math>n-2007\le S(n)</math> and compare the possible values for the left hand side and the right hand side of this innequality.
 +
 
 +
'''Case 1:''' <math>n</math> has 5 digits or more.
 +
 
 +
Let <math>d</math> = number of digits of n.
 +
 
 +
Then as a function of d,
 +
 
 +
<math>10^d \le n < 10^{d+1}-1</math>, and <math>1 \le S(n) \le 9^2d</math>
 +
 
 +
<math>10^d - 2007 \le n < 10^{d+1}-2008</math>, and <math>1 \le S(n) \le 81d</math>
 +
 
 +
when <math>d \ge 5</math>,
 +
 
 +
<math>10^d - 2007 \ge 10^5 -2007</math>
 +
 
 +
<math>10^d - 2007 \ge 10^5 -2007 > 81d</math>
 +
 
 +
Since <math>10^d - 2007 > 81d</math> for <math>d \ge 5</math>, then <math>n-2007\not\le S(n)</math> and there is no <math>S(n)</math> possible when <math>n</math> has 5 or more digits.
 +
 
 +
~Tomas Diaz. orders@tomasdiaz.com

Revision as of 14:07, 24 November 2023

Problem

Let $S(n)$ be the sum of the squares of the digits of $n$. How many positive integers $n>2007$ satisfy the inequality $n-S(n)\le 2007$?

Solution

We start by rearranging the inequality the following way:

$n-2007\le S(n)$ and compare the possible values for the left hand side and the right hand side of this innequality.

Case 1: $n$ has 5 digits or more.

Let $d$ = number of digits of n.

Then as a function of d,

$10^d \le n < 10^{d+1}-1$, and $1 \le S(n) \le 9^2d$

$10^d - 2007 \le n < 10^{d+1}-2008$, and $1 \le S(n) \le 81d$

when $d \ge 5$,

$10^d - 2007 \ge 10^5 -2007$

$10^d - 2007 \ge 10^5 -2007 > 81d$

Since $10^d - 2007 > 81d$ for $d \ge 5$, then $n-2007\not\le S(n)$ and there is no $S(n)$ possible when $n$ has 5 or more digits.

~Tomas Diaz. orders@tomasdiaz.com