Difference between revisions of "2023 AMC 12B Problems/Problem 6"

(Solution 3)
m (Solution 4)
Line 55: Line 55:
  
 
==Solution 4==
 
==Solution 4==
The expressions to the power of even powers are always positive, so we don't need to care about those. We only need to care about <math>(x-1)^1(x-3)^3(x-5)^5(x-7)^7(x-9)^9</math>. We need 0, 2, or 4 of the expressions to be negative. The 9 through 10 interval and 10 plus interval make all of the expressions positive. The 5 through 6 and 6 through 7 intervals make two of the expressions negative. The 1 through 2 and 2 through 3 intervals make four of the expressions negative. There are <math>\boxed{\textbf{(C) 6}}</math> intervals.
+
The expressions to the power of even powers are always positive, so we don't need to care about those. We only need to care about <math>(x-1)^1(x-3)^3(x-5)^5(x-7)^7(x-9)^9</math>. We need 0, 2, or 4 of the expressions to be negative. The 9 through 10 interval and 10 plus interval make all of the expressions positive. The 5 through 6 and 6 through 7 intervals make two of the expressions negative. The 1 through 2 and 2 through 3 intervals make four of the expressions negative. There are <math>\boxed{\textbf{(D) 6}}</math> intervals.
  
 
~Aopsthedude
 
~Aopsthedude

Revision as of 23:32, 15 November 2023

The following problem is from both the 2023 AMC 10B #12 and 2023 AMC 12B #6, so both problems redirect to this page.

Problem

When the roots of the polynomial

$P(x)  = (x-1)^1 (x-2)^2 (x-3)^3 \cdot \cdot \cdot (x-10)^{10}$

are removed from the number line, what remains is the union of 11 disjoint open intervals. On how many of these intervals is $P(x)$ positive?

$\textbf{(A)}~3\qquad\textbf{(B)}~4\qquad\textbf{(C)}~5\qquad\textbf{(D)}~6\qquad\textbf{(E)}~7$

Solution 1

$P(x)$ is a product of $(x-r_n)$ or 10 terms. When $x < 1$, all terms are $< 0$, but $P(x) > 0$ because there is an even number of terms. The sign keeps alternating $+,-,+,-,....,+$. There are 11 intervals, so there are $\boxed{\textbf{6}}$ positives and 5 negatives. $\boxed{\textbf{(D) 6}}$

~$\textbf{Techno}\textcolor{red}{doggo}$

Solution 2

Denote by $I_k$ the interval $\left( k - 1 , k \right)$ for $k \in \left\{ 2, 3, \cdots , 10 \right\}$ and $I_1$ the interval $\left( - \infty, 1 \right)$.

Therefore, the number of intervals that $P(x)$ is positive is \begin{align*} 1 + \sum_{i=1}^{10} \Bbb I \left\{  \sum_{j=i}^{10} j \mbox{ is even}   \right\}   & = 1 + \sum_{i=1}^{10} \Bbb I \left\{ \frac{\left( i + 10 \right) \left( 11 - i \right)}{2} \mbox{ is even}   \right\} \\  & = 1 + \sum_{i=1}^{10} \Bbb I \left\{ \frac{- i^2 + i + 110}{2} \mbox{ is even}   \right\} \\  & = 1 + \sum_{i=1}^{10} \Bbb I \left\{ \frac{i^2 - i}{2} \mbox{ is odd}   \right\} \\  & = \boxed{\textbf{(D) 6}} . \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Solution 3

We can use the turning point behavior at the roots of a polynomial graph to find out the amount of intervals that are positive.

First, we evaluate any value on the interval $(-\infty, 1)$. Since the degree of $P(x)$ is $1+2+...+9+10$ = $\frac{10\times11}{2}$ = $55$, and every term in P(x) is negative, multiplying 55 negatives gives a negative value. So $(-\infty, 0)$ is a negative interval.

We know that the roots of P(x) are at $1,2,...,10$. When the degree of the term of each root is odd, the graph of P(x) will pass through the graph and change signs, and vice versa. So at $x=1$, the graph will change signs; at $x=2$, the graph will not, and so on.

This tells us that the interval $(1,2)$ is positive, $(2,3)$ is also positive, $(3,4)$ is negative, $(4,5)$ is also negative, and so on, with the pattern being $+,+,-,-,+,+,-,-,...$ .

The positive intervals are therefore $(1,2)$, $(2,3)$, $(5,6)$, $(6,7)$, $(9,10)$, and $(10,\infty)$, for a total of $\boxed{\textbf{(D) 6}}$.

~nm1728

Solution 4

The expressions to the power of even powers are always positive, so we don't need to care about those. We only need to care about $(x-1)^1(x-3)^3(x-5)^5(x-7)^7(x-9)^9$. We need 0, 2, or 4 of the expressions to be negative. The 9 through 10 interval and 10 plus interval make all of the expressions positive. The 5 through 6 and 6 through 7 intervals make two of the expressions negative. The 1 through 2 and 2 through 3 intervals make four of the expressions negative. There are $\boxed{\textbf{(D) 6}}$ intervals.

~Aopsthedude

Video Solution 1 by OmegaLearn

https://youtu.be/taNU5dQ5-sA


See Also

2023 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png