Difference between revisions of "2023 AMC 12B Problems/Problem 22"

(See also)
Line 21: Line 21:
 
{{AMC12 box|ab=B|year=2023|num-b=21|num-a=23}}
 
{{AMC12 box|ab=B|year=2023|num-b=21|num-a=23}}
  
[[Category:Functional equation]]
+
[[Category:Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:35, 15 November 2023

Problem

A real-valued function $f$ has the property that for all real numbers $a$ and $b,$ \[f(a + b)  + f(a - b) = 2f(a) f(b).\] Which one of the following cannot be the value of $f(1)?$

$\textbf{(A) } 0 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } -1 \qquad \textbf{(D) } 2 \qquad \textbf{(E) } -2$

Solution 1

Substituting $a = b$ we get \[f(2a) + f(0) = 2f(a)^2\] Substituting $a= 0$ we find \[2f(0) = 2f(0)^2 \implies f(0) \in \{0, 1\}.\] This gives \[f(2a) = 2f(a)^2 - f(0) \geq 0-1\] Plugging in $a = \frac{1}{2}$ implies $f(1) \geq -1$, so answer choice $\boxed{\textbf{(E) }}$ is impossible.

~AtharvNaphade

See also

2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png