Difference between revisions of "2023 AMC 12B Problems/Problem 14"
(→Solution) |
|||
Line 13: | Line 13: | ||
Putting all cases together, the total number of solutions is | Putting all cases together, the total number of solutions is | ||
− | \boxed{\textbf{(A) 5}}. | + | <math>\boxed{\textbf{(A) 5}}</math>. |
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC12 box|year=2023|ab=B|num-b=13|num-a=15}} | ||
+ | {{MAA Notice}} |
Revision as of 19:29, 15 November 2023
Solution
Denote three roots as . Following from Vieta's formula, .
Case 1: All roots are negative.
We have the following solution: .
Case 2: One root is negative and two roots are positive.
We have the following solutions: , , , .
Putting all cases together, the total number of solutions is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See Also
2023 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.