Difference between revisions of "2023 AMC 10B Problems/Problem 21"

(Add another solution)
Line 28: Line 28:
  
 
~kjljixx
 
~kjljixx
 +
 +
==Solution 3==
 +
 +
We use the generating functions approach to solve this problem.
 +
Define <math>\Delta = \left\{ \left( a, b, c \right) \in \Bbb Z_+: a+b+c = 2023 \right\}</math>.
 +
 +
We have
 +
<cmath>
 +
\[
 +
\left( x + y + z \right)^{2023}
 +
= \sum_{(a,b,c) \in \Delta}
 +
\binom{2023}{a,b,c} x^a y^b z^c .
 +
\]
 +
</cmath>
 +
 +
First, we set <math>x \leftarrow 1</math>, <math>y \leftarrow 1</math>, <math>z \leftarrow 1</math>.
 +
We get
 +
<cmath>
 +
\[
 +
3^{2023}
 +
= \sum_{(a,b,c) \in \Delta}
 +
\binom{2023}{a,b,c} 1 . \hspace{1cm} (1)
 +
\]
 +
</cmath>
 +
 +
Second, we set <math>x \leftarrow 1</math>, <math>y \leftarrow -1</math>, <math>z \leftarrow 1</math>.
 +
We get
 +
<cmath>
 +
\[
 +
1
 +
= \sum_{(a,b,c) \in \Delta}
 +
\binom{2023}{a,b,c} (-1)^b . \hspace{1cm} (2)
 +
\]
 +
</cmath>
 +
 +
Third, we set <math>x \leftarrow 1</math>, <math>y \leftarrow 1</math>, <math>z \leftarrow -1</math>.
 +
We get
 +
<cmath>
 +
\[
 +
1
 +
= \sum_{(a,b,c) \in \Delta}
 +
\binom{2023}{a,b,c} (-1)^c . \hspace{1cm} (3)
 +
\]
 +
</cmath>
 +
 +
Fourth, we set <math>x \leftarrow 1</math>, <math>y \leftarrow -1</math>, <math>z \leftarrow -1</math>.
 +
We get
 +
<cmath>
 +
\[
 +
-1
 +
= \sum_{(a,b,c) \in \Delta}
 +
\binom{2023}{a,b,c} (-1)^{b+c} . \hspace{1cm} (4)
 +
\]
 +
</cmath>
 +
 +
Taking <math>\frac{(1)-(2) - (3)+(4)}{4}</math>, we get
 +
<cmath>
 +
\begin{align*}
 +
\frac{3^{2023} - 1 - 1 + (-1)}{4}
 +
& = \frac{1}{4}
 +
\sum_{(a,b,c) \in \Delta}
 +
\binom{2023}{a,b,c}
 +
\left(
 +
1 - (-1)^b - (-1)^c + (-1)^{b+c}
 +
\right) \\
 +
& = \frac{1}{4}
 +
\sum_{(a,b,c) \in \Delta}
 +
\binom{2023}{a,b,c}
 +
\left( 1 - (-1)^b \right)
 +
\left( 1 - (-1)^c \right) \\
 +
& = \sum_{\substack{(a,b,c) \in \Delta \\ a, b, c \mbox{ are odds}}}
 +
\binom{2023}{a,b,c} .
 +
\end{align*}
 +
</cmath>
 +
 +
The last expression above is the number of ways to get all three bins with odd numbers of balls.
 +
Therefore, this happens with probability
 +
<math></math>
 +
\begin{align*}
 +
\frac{\frac{3^{2023} - 1 - 1 + (-1)}{4}}{3^{2023}}
 +
& \approx \boxed{\textbf{(E) <math>\frac{1}{4}</math>}}.
 +
\end{align*}
 +
<math></math>
 +
 +
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Revision as of 17:16, 15 November 2023

Problem

Each of 2023 balls is randomly placed into one of 3 bins. Which of the following is closest to the probability that each of the bins will contain an odd number of balls?

Solution 1

We first examine the possible arrangements for parity of number of balls in each box for $2022$ balls.

If a $0$ denotes an even number and a $1$ denotes an odd number, then the distribution of balls for $2022$ balls could be $000,011,101,$ or $110$. With the insanely overpowered magic of cheese, we assume that each case is about equally likely.

From $000$, it is not possible to get to all odd by adding one ball; we could either get $100,010,$ or $001$. For the other $3$ cases, though, if we add a ball to the exact right place, then it'll work.

For each of the working cases, we have $1$ possible slot the ball can go into (for $101$, for example, the new ball must go in the center slot to make $111$) out of the $3$ slots, so there's a $\dfrac13$ chance. We have a $\dfrac34$ chance of getting one of these working cases, so our answer is $\dfrac34\cdot\dfrac13=\boxed{\textbf{(E) }\dfrac14.}$

~Technodoggo

Solution 2

We will start with all the balls outside of the boxes, and distribute them as follows:

We put $x$ balls into the first box. There is (obviously) a roughly $\frac{1}{2}$ probability $x$ is odd (It's okay to not use the exact probability since the problem asks for the closest answer choice, and the answer choices aren't very close to each other).

We put $y$ balls into the second box. There is also a roughly $\frac{1}{2}$ probability $y$ is odd.

If both $x$ and $y$ are odd, then the number of balls which go into the third box must also be odd, since 2023 is odd. Additionally, $x$ and $y$ clearly must both be odd in order for the problem conditions to be satisfied.

Therefore our answer is the probability both $x$ and $y$ are odd, which is approximately $\frac{1}{2}\cdot\frac{1}{2}=\boxed{\textbf{(E) }\dfrac14.}$

~kjljixx

Solution 3

We use the generating functions approach to solve this problem. Define $\Delta = \left\{ \left( a, b, c \right) \in \Bbb Z_+: a+b+c = 2023 \right\}$.

We have \[ \left( x + y + z \right)^{2023} = \sum_{(a,b,c) \in \Delta} \binom{2023}{a,b,c} x^a y^b z^c . \]

First, we set $x \leftarrow 1$, $y \leftarrow 1$, $z \leftarrow 1$. We get \[ 3^{2023} = \sum_{(a,b,c) \in \Delta} \binom{2023}{a,b,c} 1 . \hspace{1cm} (1) \]

Second, we set $x \leftarrow 1$, $y \leftarrow -1$, $z \leftarrow 1$. We get \[ 1 = \sum_{(a,b,c) \in \Delta} \binom{2023}{a,b,c} (-1)^b . \hspace{1cm} (2) \]

Third, we set $x \leftarrow 1$, $y \leftarrow 1$, $z \leftarrow -1$. We get \[ 1 = \sum_{(a,b,c) \in \Delta} \binom{2023}{a,b,c} (-1)^c . \hspace{1cm} (3) \]

Fourth, we set $x \leftarrow 1$, $y \leftarrow -1$, $z \leftarrow -1$. We get \[ -1 = \sum_{(a,b,c) \in \Delta} \binom{2023}{a,b,c} (-1)^{b+c} . \hspace{1cm} (4) \]

Taking $\frac{(1)-(2) - (3)+(4)}{4}$, we get \begin{align*} \frac{3^{2023} - 1 - 1 + (-1)}{4} & = \frac{1}{4} \sum_{(a,b,c) \in \Delta} \binom{2023}{a,b,c}  \left( 1 - (-1)^b - (-1)^c + (-1)^{b+c} \right) \\ & = \frac{1}{4} \sum_{(a,b,c) \in \Delta} \binom{2023}{a,b,c}  \left( 1 - (-1)^b \right) \left( 1 - (-1)^c \right) \\ & = \sum_{\substack{(a,b,c) \in \Delta \\ a, b, c \mbox{ are odds}}} \binom{2023}{a,b,c} . \end{align*}

The last expression above is the number of ways to get all three bins with odd numbers of balls. Therefore, this happens with probability $$ (Error compiling LaTeX. Unknown error_msg) \begin{align*} \frac{\frac{3^{2023} - 1 - 1 + (-1)}{4}}{3^{2023}} & \approx \boxed{\textbf{(E) $\frac{1}{4}$}}. \end{align*} $$ (Error compiling LaTeX. Unknown error_msg)

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)