Difference between revisions of "2023 AMC 12B Problems/Problem 11"

(Created blank page)
 
Line 1: Line 1:
 +
==Solution==
  
 +
Denote by <math>x</math> the length of the shorten base.
 +
Thus, the height of the trapezoid is
 +
<cmath>
 +
\begin{align*}
 +
\sqrt{1^2 - \left( \frac{x}{2} \right)^2} .
 +
\end{align*}
 +
</cmath>
 +
 +
Thus, the area of the trapezoid is
 +
<math></math>
 +
\begin{align*}
 +
\frac{1}{2} \left( x + 2 x \right) \sqrt{1^2 - \left( \frac{x}{2} \right)^2}
 +
& = \frac{3}{4} \sqrt{x^2 \left( 4 - x^2 \right)} \\
 +
& \leq \frac{3}{4} \frac{x^2 + \left( 4 - x^2 \right)}{2} \\
 +
& = \boxed{\textbf{(D) <math>\frac{3}{2}</math>}} ,
 +
\end{align*}
 +
<math></math>
 +
 +
where the inequality follows from the AM-GM inequality and it is binding if and only if <math>x^2 = 4 - x^2</math>.
 +
 +
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Revision as of 17:29, 15 November 2023

Solution

Denote by $x$ the length of the shorten base. Thus, the height of the trapezoid is \begin{align*} \sqrt{1^2 - \left( \frac{x}{2} \right)^2} . \end{align*}

Thus, the area of the trapezoid is $$ (Error compiling LaTeX. Unknown error_msg) \begin{align*} \frac{1}{2} \left( x + 2 x \right) \sqrt{1^2 - \left( \frac{x}{2} \right)^2} & = \frac{3}{4} \sqrt{x^2 \left( 4 - x^2 \right)} \\ & \leq \frac{3}{4} \frac{x^2 + \left( 4 - x^2 \right)}{2} \\ & = \boxed{\textbf{(D) $\frac{3}{2}$}} , \end{align*} $$ (Error compiling LaTeX. Unknown error_msg)

where the inequality follows from the AM-GM inequality and it is binding if and only if $x^2 = 4 - x^2$.

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)