Difference between revisions of "2023 AMC 12A Problems/Problem 6"
(→Solution 2) |
(→Solution 2) |
||
Line 46: | Line 46: | ||
</math>x_1=6+2sqrt(5)<math> | </math>x_1=6+2sqrt(5)<math> | ||
− | then | + | |
+ | then | ||
+ | |||
</math>x_1=6+2sqrt(5)-(6-2sqrt(5)$ | </math>x_1=6+2sqrt(5)-(6-2sqrt(5)$ | ||
Revision as of 23:28, 9 November 2023
Contents
Problem
Points and lie on the graph of . The midpoint of is . What is the positive difference between the -coordinates of and ?
Solution
Let and , since is their midpoint. Thus, we must find . We find two equations due to both lying on the function . The two equations are then and . Now add these two equations to obtain . By logarithm rules, we get . By raising 2 to the power of both sides, we obtain . We then get . Since we're looking for , we obtain
~amcrunner (yay, my first AMC solution)
Solution 2
Bascailly, we can use the midpoint formula
assume that the points are and
assume that the points are (,) and (,)
midpoint formula is (,(
thus
and
2^0=1(12x_1)-(x_1^2)=16(12x_1)-(x_1^2)-16=0$for simplicty lets say x1=x
12x-x^2=16 x^2-12x+16
put this into quadratic formula and you should get$ (Error compiling LaTeX. Unknown error_msg)x_1=6+2sqrt(5)x_1=6+2sqrt(5)-(6-2sqrt(5)$
See Also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 5 |
Followed by Problem 7 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.