Difference between revisions of "2023 AMC 10A Problems/Problem 17"

(Replaced content with "==Solution==")
(Tag: Replaced)
Line 1: Line 1:
 +
Let <math>ABCD</math> be a rectangle with <math>AB = 30</math> and <math>BC = 28</math>. Point <math>P</math> and <math>Q</math> lie on <math>\overlinesegment{BC}</math> and <math>\overlinesegment{CD}</math> respectively so that all sides of <math>\triangle{ABP}, \triangle{PCQ},</math> and <math>\triangle{QDA}</math> have integer lengths. What is the perimeter of <math>\triangle{APQ}</math>?
 +
 +
 +
<math>\text{A) } 84 \qquad \text{B) } 86 \qquad \text{C) } 88  \qquad \text{D) } 90 \qquad  \text{E) } 92</math>
 +
 
==Solution==
 
==Solution==

Revision as of 20:13, 9 November 2023

Let $ABCD$ be a rectangle with $AB = 30$ and $BC = 28$. Point $P$ and $Q$ lie on $\overlinesegment{BC}$ (Error compiling LaTeX. Unknown error_msg) and $\overlinesegment{CD}$ (Error compiling LaTeX. Unknown error_msg) respectively so that all sides of $\triangle{ABP}, \triangle{PCQ},$ and $\triangle{QDA}$ have integer lengths. What is the perimeter of $\triangle{APQ}$?


$\text{A) } 84 \qquad \text{B) } 86 \qquad \text{C) } 88   \qquad \text{D) } 90 \qquad   \text{E) } 92$

Solution