Difference between revisions of "1992 IMO Problems/Problem 1"
(→Problem) |
(→Solution) |
||
Line 2: | Line 2: | ||
Find all integers <math>a</math>, <math>b</math>, <math>c</math> satisfying <math>1 < a < b < c</math> such that <math>(a - 1)(b -1)(c - 1)</math> is a divisor of <math>abc - 1</math>. | Find all integers <math>a</math>, <math>b</math>, <math>c</math> satisfying <math>1 < a < b < c</math> such that <math>(a - 1)(b -1)(c - 1)</math> is a divisor of <math>abc - 1</math>. | ||
== Solution == | == Solution == | ||
− | {{solution}} | + | |
+ | <math>1<\frac{abc-1}{(a-1)(b-1)(c-1)}<\frac{abc}{(a-1)(b-1)(c-1)}</math> | ||
+ | |||
+ | <math>1<\frac{abc-1}{(a-1)(b-1)(c-1)}<\left(\frac{a}{a-1}\right) \left(\frac{b}{b-1}\right) \left(\frac{c}{c-1}\right)</math> | ||
+ | |||
+ | With <math>1<a<b<c</math> it implies that <math>a \ge 2</math>, <math>b \ge 3</math>, <math>c \ge 4</math> | ||
+ | |||
+ | Therefore, <math>\frac{a}{a-1}=1+\frac{1}{a-1}</math> | ||
+ | |||
+ | which for <math>a</math> gives: <math>\frac{a}{a-1} \le 1+\frac{1}{2-1}</math>, which gives :<math>\frac{a}{a-1} \le 2</math> | ||
+ | |||
+ | for <math>b</math> gives: <math>\frac{b}{b-1} \le 1+\frac{1}{3-1}</math>, which gives :<math>\frac{b}{b-1} \le \frac{3}{2}</math> | ||
+ | |||
+ | for <math>c</math> gives: <math>\frac{c}{c-1} \le 1+\frac{1}{4-1}</math>, which gives :<math>\frac{c}{c-1} \le \frac{4}{3}</math> | ||
+ | |||
+ | Substituting those inequalities into the original inequality gives: | ||
+ | |||
+ | <math>1<\frac{abc-1}{(a-1)(b-1)(c-1)}<\left( 2 \right) \left(\frac{3}{2}\right) \left(\frac{4}{3}\right)</math> | ||
+ | |||
+ | <math>1<\frac{abc-1}{(a-1)(b-1)(c-1)}<4</math> | ||
+ | |||
+ | Since <math>\frac{abc-1}{(a-1)(b-1)(c-1)}</math> needs to be integer, | ||
+ | |||
+ | then <math>\frac{abc-1}{(a-1)(b-1)(c-1)}=2</math> or <math>\frac{abc-1}{(a-1)(b-1)(c-1)}=3</math> | ||
+ | |||
+ | Case 1: <math>\frac{abc-1}{(a-1)(b-1)(c-1)}=2</math> | ||
+ | |||
+ | <math>abc-1=2(a-1)(b-1)(c-1)=2abc-2(ab+bc+ac)+2(a+b+c)-2</math> | ||
+ | |||
+ | Case 1, subcase <math>a=2</math>: | ||
+ | |||
+ | <math>2bc-1=2bc-2(b+c)+2</math> gives: <math>2(b+c)=3</math> which has no solution because <math>2(b+c)</math> is even. | ||
+ | |||
+ | Case 1, subcase <math>a=3</math>: | ||
+ | |||
+ | <math>3bc-1=4bc-4(b+c)+4</math> | ||
+ | |||
+ | <math>bc-4b-4c+5=0</math> | ||
+ | |||
+ | <math>(b-4)(c-4)=11</math> | ||
+ | |||
+ | <math>b-4=1</math> and <math>c-4=11</math> provides solution <math>(a,b,c)=(3,5,15)</math> | ||
+ | |||
+ | Case 2: <math>\frac{abc-1}{(a-1)(b-1)(c-1)}=3</math> | ||
+ | |||
+ | <math>abc-1=3(a-1)(b-1)(c-1)=3abc-3(ab+bc+ac)+3(a+b+c)-3</math> | ||
+ | |||
+ | Case 2, subcase <math>a=2</math>: | ||
+ | |||
+ | <math>2bc-1=3bc-3(b+c)+3</math> | ||
+ | |||
+ | <math>bc-3b-3c+4=0</math> | ||
+ | |||
+ | <math>(b-3)(c-3)=5</math> | ||
+ | |||
+ | <math>b-3=1</math> and <math>c-3=5</math> provides solution <math>(a,b,c)=(2,4,8)</math> | ||
+ | |||
+ | Case 2, subcase <math>a=3</math>: | ||
+ | |||
+ | <math>3bc-1=6bc-6(b+c)+6</math> | ||
+ | |||
+ | Since <math>(3bc-1</math>) mod <math>3 = -1</math> and <math>(6bc-6(b+c)+6)</math> mod <math>3 = 0</math>, then there is no solution for this subcase. | ||
+ | |||
+ | Now we verify our two solutions: | ||
+ | |||
+ | when <math>(a,b,c)=(2,4,8)</math> | ||
+ | |||
+ | <math>abc-1=(2)(4)(8)-1=63</math> and <math>(a-1)(b-1)(c-1)=(1)(3)(7)=21</math> | ||
+ | |||
+ | Since <math>21</math> is a factor of <math>63</math>, this solutions is correct. | ||
+ | |||
+ | when <math>(a,b,c)=(3,5,15)</math> | ||
+ | |||
+ | <math>abc-1=(3)(5)(15)-1=224</math> and <math>(a-1)(b-1)(c-1)=(2)(4)(14)=112</math> | ||
+ | |||
+ | Since <math>112</math> is a factor of <math>224</math>, this solutions is also correct. | ||
+ | |||
+ | The solutions are: <math>(a,b,c)=(2,4,8)</math> and <math>(a,b,c)=(3,5,15)</math> | ||
+ | |||
+ | ~ Tomas Diaz | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | {{alternate solutions}} |
Revision as of 18:11, 6 October 2023
Problem
Find all integers , , satisfying such that is a divisor of .
Solution
With it implies that , ,
Therefore,
which for gives: , which gives :
for gives: , which gives :
for gives: , which gives :
Substituting those inequalities into the original inequality gives:
Since needs to be integer,
then or
Case 1:
Case 1, subcase :
gives: which has no solution because is even.
Case 1, subcase :
and provides solution
Case 2:
Case 2, subcase :
and provides solution
Case 2, subcase :
Since ) mod and mod , then there is no solution for this subcase.
Now we verify our two solutions:
when
and
Since is a factor of , this solutions is correct.
when
and
Since is a factor of , this solutions is also correct.
The solutions are: and
~ Tomas Diaz
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.