Difference between revisions of "2013 AIME II Problems/Problem 13"
(→Solution 5) |
(→Solution 5) |
||
Line 72: | Line 72: | ||
<asy> | <asy> | ||
size(200); | size(200); | ||
− | pair A=(0,0),B=(2*sqrt(7),0),C=(sqrt(7),3),D=(3*B+C)/4; | + | pair A=(0,0),B=(2*sqrt(7),0),C=(sqrt(7),3),D=(3*B+C)/4,L=C/5,M=3*B/7; |
draw(A--B--C--cycle);draw(A--D^^B--L^^C--M); | draw(A--B--C--cycle);draw(A--D^^B--L^^C--M); | ||
− | label("$A$",A,SW);label("$B$",B,SE);label("$C$",C,N);label("$D$",D,NE); | + | label("$A$",A,SW);label("$B$",B,SE);label("$C$",C,N);label("$D$",D,NE);label("$L$",L,NW);label("$M$",M,S); |
pair EE=D/2; | pair EE=D/2; | ||
label("$\sqrt{7}$", C--EE, W); label("$x$", D--B, E); label("$3x$", C--D, E); label("$l$", EE--D, N); label("$3$", EE--B, N); | label("$\sqrt{7}$", C--EE, W); label("$x$", D--B, E); label("$3x$", C--D, E); label("$l$", EE--D, N); label("$3$", EE--B, N); |
Revision as of 00:23, 23 September 2023
Contents
Problem 13
In , , and point is on so that . Let be the midpoint of . Given that and , the area of can be expressed in the form , where and are positive integers and is not divisible by the square of any prime. Find .
Video Solution by Punxsutawney Phil
https://www.youtube.com/watch?v=IXPT0vHgt_c
Solution 1
We can set . Set , therefore . Thereafter, by Stewart's Theorem on and cevian , we get . Also apply Stewart's Theorem on with cevian . After simplification, . Therefore, . Finally, note that (using [] for area) , because of base-ratios. Using Heron's Formula on , as it is simplest, we see that , so your answer is .
Solution 2
After drawing the figure, we suppose , so that , , and .
Using Law of Cosines for and ,we get
So, , we get
Using Law of Cosines in , we get
So,
Using Law of Cosines in and , we get
, and according to , we can get
Using and , we can solve and .
Finally, we use Law of Cosines for ,
then , so the height of this is .
Then the area of is , so the answer is .
Solution 3
Let be the foot of the altitude from with other points labelled as shown below. Now we proceed using mass points. To balance along the segment , we assign a mass of and a mass of . Therefore, has a mass of . As is the midpoint of , we must assign a mass of as well. This gives a mass of and a mass of .
Now let be the base of the triangle, and let be the height. Then as , and as , we know that Also, as , we know that . Therefore, by the Pythagorean Theorem on , we know that
Also, as , we know that . Furthermore, as , and as , we know that and , so . Therefore, by the Pythagorean Theorem on , we get Solving this system of equations yields and . Therefore, the area of the triangle is , giving us an answer of .
Solution 4
Let the coordinates of A, B and C be (-a, 0), (a, 0) and (0, h) respectively. Then and implies ; implies Solve this system of equations simultaneously, and . Area of the triangle is ah = , giving us an answer of .
Solution 5
Let . Then and . Also, let . Using Stewart's Theorem on gives us the equation or, after simplifying, . We use Stewart's again on : , which becomes . Substituting , we see that , or . Then .
We now use Law of Cosines on . . Plugging in for and , , so . Using the Pythagorean trig identity , , so .
, and our answer is .
Note to writter: Couldn't we just use Heron's formula for after is solved then noticing that ?
Solution 6 (Barycentric Coordinates)
Let ABC be the reference triangle, with , , and . We can easily calculate and subsequently . Using distance formula on and gives
But we know that , so we can substitute and now we have two equations and two variables. So we can clear the denominators and prepare to cancel a variable:
Then we add the equations to get
Then plugging gives and . Then the height from is , and the area is and our answer is .
Solution 7
Let and . It is trivial to show that and . Thus, since and , we get that
Multiplying both equations by , we get that
Solving these equations, we get that and .
Thus, the area of is , so our answer is .
Solution 8
The main in solution is to prove that .
Let be midpoint Let be cross point of and
We use the formula for crossing segments in and get:
By Stewart's Theorem on and cevian , we get after simplification trapezium is cyclic vladimir.shelomovskii@gmail.com, vvsss
See Also
2013 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.