|
|
Line 1: |
Line 1: |
− | == Problem ==
| |
− | When the base of a triangle is increased 10% and the altitude to this base is decreased 10%, the change in area is
| |
| | | |
− | <math> \text{(A)}\ 1\%~\text{increase}\qquad\text{(B)}\ \frac{1}2\%~\text{increase}\qquad\text{(C)}\ 0\%\qquad\text{(D)}\ \frac{1}2\% ~\text{decrease}\qquad\text{(E)}\ 1\% ~\text{decrease} </math>
| |
− |
| |
− | == Solution ==
| |
− | Let the base of the original triangle be <math>b</math> and the height be <math>h</math>. We know the new base is <math>\frac{11b}{10}</math> and the new height is <math>\frac{9h}{10}</math>. Thus we see the area of the original triangle is <math>\frac{bh}{2}</math> and the area of the new triangle is <math>\frac{99bh}{200}</math>. It follows the percentage decrease is <math>1</math>% because <math>\frac{\frac{bh}{2}-\frac{99bh}{200}}{\frac{bh}{2}}=\frac{1}{100}</math>. So our answer is <math>1</math>% decrease <math>\boxed{E}</math>.
| |
− |
| |
− | == See also ==
| |
− | {{AHSME box|year=1966|num-b=1|num-a=3}}
| |
− |
| |
− | [[Category:Introductory Geometry Problems]]
| |
− | {{MAA Notice}}
| |