Difference between revisions of "Barycentric coordinates"
(→Useful formulas) |
(→Useful formulas) |
||
Line 10: | Line 10: | ||
==Useful formulas== | ==Useful formulas== | ||
+ | <i><b>Notation</b></i> | ||
+ | |||
Let the triangle <math>\triangle ABC</math> be a given triangle, <math>a, b, c</math> be the lengths of <math>BC, AC, AB, \angle A = \alpha, \angle B = \beta, \angle C = \gamma.</math> | Let the triangle <math>\triangle ABC</math> be a given triangle, <math>a, b, c</math> be the lengths of <math>BC, AC, AB, \angle A = \alpha, \angle B = \beta, \angle C = \gamma.</math> | ||
Line 18: | Line 20: | ||
<math>r^2 = \frac {(s-a)(s-b)(s-c)}{s},</math> where <math>r</math> is the inradius, <math>R = \frac {abc}{2 \cdot 2S}</math> is the circumradius, | <math>r^2 = \frac {(s-a)(s-b)(s-c)}{s},</math> where <math>r</math> is the inradius, <math>R = \frac {abc}{2 \cdot 2S}</math> is the circumradius, | ||
− | <math>\cos \omega = \frac {a^2 + b^2 +c^2}{2 \cdot 2S}</math> is the cosine of the Brocard angle. | + | <math>\cos \omega = \frac {a^2 + b^2 +c^2}{2 \cdot 2S}</math> is the cosine of the Brocard angle, |
+ | |||
+ | <cmath>S_A = bc \cos \alpha = \frac{b^2+c^2-a^2}{2}, S_B = ac \cos \beta =\frac{a^2 +c^2-b^2}{2}, S_C = ab \cos \gamma = \frac {a^2+b^2-c^2}{2}.</cmath> | ||
+ | |||
+ | <i><b>Main</b></i> | ||
− | + | For any point in the plane <math>ABC</math> there are <i><b>barycentric coordinates(BC):</b></i> <math>\vec X = (x : y: z)</math>: | |
− | For any point in the plane <math>ABC</math> there are barycentric coordinates: | ||
<cmath>x \cdot \vec {XA} + y \cdot \vec {YB} + z \cdot \vec {XC} = \vec {0},</cmath> | <cmath>x \cdot \vec {XA} + y \cdot \vec {YB} + z \cdot \vec {XC} = \vec {0},</cmath> | ||
<cmath>\vec X = \frac {x \cdot \vec {A} + y \cdot \vec {B} + z \cdot \vec {C}}{x+y+z}.</cmath> | <cmath>\vec X = \frac {x \cdot \vec {A} + y \cdot \vec {B} + z \cdot \vec {C}}{x+y+z}.</cmath> | ||
− | The normalized (absolute) barycentric coordinates NBC satisfy the condition <math>x + y + z = 1,</math> they are uniquely determined: | + | The <i><b>normalized (absolute)</b></i> barycentric coordinates <i><b>NBC</b></i> satisfy the condition <math>x + y + z = 1,</math> they are uniquely determined: |
<cmath>x = \frac{[\vec {XB},\vec {XC}]}{\sigma}, y = \frac{[\vec {XC},\vec {XA}]}{\sigma}, z = \frac{[\vec {XA},\vec {XB}]}{\sigma}, \sigma = [\vec {XB},\vec {XC}] + [\vec {XC},\vec {XA}] + [\vec {XA},\vec {XB}] .</cmath> | <cmath>x = \frac{[\vec {XB},\vec {XC}]}{\sigma}, y = \frac{[\vec {XC},\vec {XA}]}{\sigma}, z = \frac{[\vec {XA},\vec {XB}]}{\sigma}, \sigma = [\vec {XB},\vec {XC}] + [\vec {XC},\vec {XA}] + [\vec {XA},\vec {XB}] .</cmath> | ||
Triangle vertices <math>A = (1:0:0), B = (0:1:0), C = (0:0:1).</math> | Triangle vertices <math>A = (1:0:0), B = (0:1:0), C = (0:0:1).</math> | ||
− | The barycentric coordinates of a point do not change under an affine transformation. | + | The barycentric coordinates of a point <i><b> do not change </b></i> under an affine transformation. |
+ | |||
+ | <i><b>Lines</b></i> | ||
The straight line in barycentric coordinates (BC) is given by the equation <math>kx + ly + mz = 0.</math> | The straight line in barycentric coordinates (BC) is given by the equation <math>kx + ly + mz = 0.</math> | ||
Line 39: | Line 46: | ||
The sideline <math>BC</math> contains the points <math>B = (0:1:0), C = (0:0:1),</math> its equation is <math>x = 0.</math> | The sideline <math>BC</math> contains the points <math>B = (0:1:0), C = (0:0:1),</math> its equation is <math>x = 0.</math> | ||
− | The line <math>AX, X = (k_1 : l_1 : m_1)</math> has equation <math>l_1z = m_1 y,</math> it intersects the sideline <math>BC</math> at the point <math> | + | The line <math>AX, X = (k_1 : l_1 : m_1)</math> has equation <math>l_1z = m_1 y,</math> it intersects the sideline <math>BC</math> at the point <math>A_X = (0 : l_1 : m_1), \frac {BA_X}{A_XC} = \frac {m_1}{l_1}, \frac {AX}{XA_X} = \frac {m_1 + l_1}{k_1}.</math> |
− | Iff <math> | + | Iff <math>A_X = (0 : l_1 : m_1), B_X = (k_1 : 0 : m_1 ), C_X = (k_1 : l_1 : 0),</math> then <math>AA_X \cap BB_X \cap CC_X = (k_1 : l_1 : m_1 ).</math> |
Let NBC of points <math>P</math> and <math>Q</math> be <math>P = (x_1 : y_1 : z_1), Q = (x_2 : y_2 : z_2).</math> | Let NBC of points <math>P</math> and <math>Q</math> be <math>P = (x_1 : y_1 : z_1), Q = (x_2 : y_2 : z_2).</math> | ||
Line 49: | Line 56: | ||
The equation of bisector of <math>PQ</math> is: | The equation of bisector of <math>PQ</math> is: | ||
<cmath>x(c^2(y_2-y_1) + b^2(z_2-z_1)) + y(a^2(z_2-z_1) + c^2(x_2-x_1)) + z(a^2(y_2-y_1) + b^2(x_2-x_1)) + a^2(y_1z_1 - y_2z_2) + b^2(x_1z_1-x_2z_2) + c^2 (x_1y_1 – x_2y_2).</cmath> | <cmath>x(c^2(y_2-y_1) + b^2(z_2-z_1)) + y(a^2(z_2-z_1) + c^2(x_2-x_1)) + z(a^2(y_2-y_1) + b^2(x_2-x_1)) + a^2(y_1z_1 - y_2z_2) + b^2(x_1z_1-x_2z_2) + c^2 (x_1y_1 – x_2y_2).</cmath> | ||
+ | Nagel line : <math> (b-c) x + (c-a) y + (a-b) z = 0.</math> | ||
<i><b>Circles</b></i> | <i><b>Circles</b></i> | ||
Line 56: | Line 64: | ||
Circumcircle contains the points <math>A = (1:0:0), B = (0:1:0), C = (0:0:1) \implies</math> | Circumcircle contains the points <math>A = (1:0:0), B = (0:1:0), C = (0:0:1) \implies</math> | ||
the equation of this circle: <cmath>xyc^2 + xzb^2 + yza^2.</cmath> | the equation of this circle: <cmath>xyc^2 + xzb^2 + yza^2.</cmath> | ||
− | |||
− | |||
The incircle contains the tangent points of the incircle with the sides: | The incircle contains the tangent points of the incircle with the sides: | ||
<cmath>\left(0 : \frac {a+b-c}{2a} : \frac {a-b+c}{2a}\right), \left(\frac {a+b-c}{2b} : 0 : \frac {-a+b+c}{2b}\right), \left(\frac {a-b+c}{2c} : \frac {-a+b+c}{2c}\right).</cmath> | <cmath>\left(0 : \frac {a+b-c}{2a} : \frac {a-b+c}{2a}\right), \left(\frac {a+b-c}{2b} : 0 : \frac {-a+b+c}{2b}\right), \left(\frac {a-b+c}{2c} : \frac {-a+b+c}{2c}\right).</cmath> | ||
− | + | The equation of the incircle is | |
<cmath>{k_a}^2x^2 + k_b^2y^2 + k_c^2z^2 - 2k_a k_b xy - 2k_a k_c xz - 2k_bk_cyz = 0,</cmath> where <math>k_a = b+c - a, k_b = a+c - b, k_c = a + b - c.</math> | <cmath>{k_a}^2x^2 + k_b^2y^2 + k_c^2z^2 - 2k_a k_b xy - 2k_a k_c xz - 2k_bk_cyz = 0,</cmath> where <math>k_a = b+c - a, k_b = a+c - b, k_c = a + b - c.</math> | ||
− | + | ||
The radical axis of two circles given by equations of this form is: | The radical axis of two circles given by equations of this form is: | ||
<cmath>k_1xa + l_1yb + m_1zc = k_2xa + l_2yb + m_2zc.</cmath> | <cmath>k_1xa + l_1yb + m_1zc = k_2xa + l_2yb + m_2zc.</cmath> | ||
+ | <i><b>Conjugate</b></i> | ||
The point <math>P = (x : y : z)</math> is isotomically conjugate with respect to <math>\triangle ABC</math> with the point <math>P_1 =\left( \frac {1}{x} : \frac {1}{y} : \frac {1}{z}\right).</math> | The point <math>P = (x : y : z)</math> is isotomically conjugate with respect to <math>\triangle ABC</math> with the point <math>P_1 =\left( \frac {1}{x} : \frac {1}{y} : \frac {1}{z}\right).</math> | ||
Line 77: | Line 84: | ||
<i><b>Triangle centers</b></i> | <i><b>Triangle centers</b></i> | ||
− | + | The median <math>AA_G, A_G \in BC \implies \frac {BA_G}{CA_G} = 1 \implies</math> <i><b>centroid</b></i> is <math>G = (1 : 1 : 1).</math> | |
− | + | ||
+ | The simmedian point <math>K</math> is isogonally conjugate with respect to <math>\triangle ABC</math> with the point <math>G \implies K = \left( a^2 : b^2 : c^2\right).</math> | ||
+ | |||
+ | The bisector <math>AA_I, A_I \in BC \implies \frac {BA_I}{CA_I} = \frac {c}{b} \implies</math> the incenter is <math>I = (a : b: c).</math> | ||
+ | |||
+ | The excenters are <math>I_A = (-a : b : c), I_B =(a : -b: c), I_C = (a : b : -c).</math> | ||
+ | |||
+ | The circumcenter <math>O</math> lies at the intersection of the bisectors <math>AB (c^2(x - y) + z(a^2 – b^2) =0)</math> and <math>AC (b^2(x - z) + y(a^2 – c^2) =0) \implies</math> its BC coordinates <math>O = (a^2S_A : b^2S_B : c^2S_C).</math> | ||
+ | |||
The orthocenter <math>H</math> is isogonally conjugate with respect to <math>\triangle ABC</math> with the point <math>O \implies H =\left( \frac {1}{S_A} : \frac {1}{S_B} : \frac {1}{S_C}\right).</math> | The orthocenter <math>H</math> is isogonally conjugate with respect to <math>\triangle ABC</math> with the point <math>O \implies H =\left( \frac {1}{S_A} : \frac {1}{S_B} : \frac {1}{S_C}\right).</math> | ||
Line 84: | Line 99: | ||
The Gergonne point is the isotomic conjugate of the Nagel point, so <math>Ge=\left( \frac {1}{b+c-a} : \frac{1}{a+c-b} : \frac{1}{a+b-c}\right ).</math> | The Gergonne point is the isotomic conjugate of the Nagel point, so <math>Ge=\left( \frac {1}{b+c-a} : \frac{1}{a+c-b} : \frac{1}{a+b-c}\right ).</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Revision as of 03:31, 26 August 2023
This can be used in mass points. http://mathworld.wolfram.com/BarycentricCoordinates.html This article is a stub. Help us out by expanding it.
Barycentric coordinates are triples of numbers corresponding to masses placed at the vertices of a reference triangle . These masses then determine a point , which is the geometric centroid of the three masses and is identified with coordinates . The vertices of the triangle are given by , , and . Barycentric coordinates were discovered by Möbius in 1827 (Coxeter 1969, p. 217; Fauvel et al. 1993).
The Central NC Math Group published a lecture concerning this topic at https://www.youtube.com/watch?v=KQim7-wrwL0 if you would like to view it.
Useful formulas
Notation
Let the triangle be a given triangle, be the lengths of
We use the following Conway symbols:
is semiperimeter, is twice the area of
where is the inradius, is the circumradius,
is the cosine of the Brocard angle,
Main
For any point in the plane there are barycentric coordinates(BC): : The normalized (absolute) barycentric coordinates NBC satisfy the condition they are uniquely determined: Triangle vertices
The barycentric coordinates of a point do not change under an affine transformation.
Lines
The straight line in barycentric coordinates (BC) is given by the equation
The lines given in the BC by the equations and intersect at the point
These lines are parallel iff
The sideline contains the points its equation is
The line has equation it intersects the sideline at the point
Iff then
Let NBC of points and be
Then the square of distance The equation of bisector of is: Nagel line :
Circles
Any circle is given by an equation of the form
Circumcircle contains the points the equation of this circle:
The incircle contains the tangent points of the incircle with the sides:
The equation of the incircle is where
The radical axis of two circles given by equations of this form is: Conjugate
The point is isotomically conjugate with respect to with the point
The point is isogonally conjugate with respect to with the point
Triangle centers
The median centroid is
The simmedian point is isogonally conjugate with respect to with the point
The bisector the incenter is
The excenters are
The circumcenter lies at the intersection of the bisectors and its BC coordinates
The orthocenter is isogonally conjugate with respect to with the point
Let Nagel point lies at line
The Gergonne point is the isotomic conjugate of the Nagel point, so
vladimir.shelomovskii@gmail.com, vvsss