Difference between revisions of "2005 AMC 12A Problems/Problem 24"
(→Solution) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Let <math>P(x)=(x-1)(x-2)(x-3)</math>. For how many [[polynomial]]s <math>Q(x)</math> does there exist a polynomial <math>R(x)</math> of degree 3 such that <math>P(Q(x))=P(x)* R(x)</math>? | Let <math>P(x)=(x-1)(x-2)(x-3)</math>. For how many [[polynomial]]s <math>Q(x)</math> does there exist a polynomial <math>R(x)</math> of degree 3 such that <math>P(Q(x))=P(x)* R(x)</math>? | ||
+ | |||
+ | |||
+ | <math>\mathrm {(A) } 19 \qquad \mathrm {(B) } 22 \qquad \mathrm {(C) } 24 \qquad \mathrm {(D) } 27 \qquad \mathrm {(E) } 32</math> | ||
== Solution == | == Solution == |
Revision as of 19:22, 19 June 2008
Problem
Let . For how many polynomials does there exist a polynomial of degree 3 such that ?
Solution
Since has degree three, then has degree six. Thus, has degree six, so must have degree two, since has degree three.
Hence, we conclude , , and must each be , , or . Since a quadratic is uniquely determined by three points, there can be different quadratics after each of the values of , , and are chosen.
However, we have included which are not quadratics. Namely,
Clearly, we could not have included any other constant functions. For any linear function, we have . Again, it is pretty obvious that we have not included any other linear functions. Therefore, the desired answer is .
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |