Difference between revisions of "2023 IMO Problems/Problem 2"
Line 3: | Line 3: | ||
Let <math>ABC</math> be an acute-angled triangle with <math>AB < AC</math>. Let <math>\Omega</math> be the circumcircle of <math>ABC</math>. Let <math>S</math> be the midpoint of the arc <math>CB</math> of <math>\Omega</math> containing <math>A</math>. The perpendicular from <math>A</math> to <math>BC</math> meets <math>BS</math> at <math>D</math> and meets <math>\Omega</math> again at <math>E \neq A</math>. The line through <math>D</math> parallel to <math>BC</math> meets line <math>BE</math> at <math>L</math>. Denote the circumcircle of triangle <math>BDL</math> by <math>\omega</math>. Let <math>\omega</math> meet <math>\Omega</math> again at <math>P \neq B</math>. Prove that the line tangent to <math>\omega</math> at <math>P</math> meets line <math>BS</math> on the internal angle bisector of <math>\angle BAC</math>. | Let <math>ABC</math> be an acute-angled triangle with <math>AB < AC</math>. Let <math>\Omega</math> be the circumcircle of <math>ABC</math>. Let <math>S</math> be the midpoint of the arc <math>CB</math> of <math>\Omega</math> containing <math>A</math>. The perpendicular from <math>A</math> to <math>BC</math> meets <math>BS</math> at <math>D</math> and meets <math>\Omega</math> again at <math>E \neq A</math>. The line through <math>D</math> parallel to <math>BC</math> meets line <math>BE</math> at <math>L</math>. Denote the circumcircle of triangle <math>BDL</math> by <math>\omega</math>. Let <math>\omega</math> meet <math>\Omega</math> again at <math>P \neq B</math>. Prove that the line tangent to <math>\omega</math> at <math>P</math> meets line <math>BS</math> on the internal angle bisector of <math>\angle BAC</math>. | ||
− | == | + | ==Video Solution== |
https://www.youtube.com/watch?v=JhThDz0H7cI [Video contains solutions to all day 1 problems] | https://www.youtube.com/watch?v=JhThDz0H7cI [Video contains solutions to all day 1 problems] | ||
+ | |||
==Solution== | ==Solution== | ||
+ | |||
[[File:2023 IMO 2o0.png|400px|right]] | [[File:2023 IMO 2o0.png|400px|right]] | ||
Denote the point diametrically opposite to a point <math>S</math> through <math>S' \implies AS'</math> is the internal angle bisector of <math>\angle BAC</math>. | Denote the point diametrically opposite to a point <math>S</math> through <math>S' \implies AS'</math> is the internal angle bisector of <math>\angle BAC</math>. |
Revision as of 08:43, 8 August 2023
Problem
Let be an acute-angled triangle with . Let be the circumcircle of . Let be the midpoint of the arc of containing . The perpendicular from to meets at and meets again at . The line through parallel to meets line at . Denote the circumcircle of triangle by . Let meet again at . Prove that the line tangent to at meets line on the internal angle bisector of .
Video Solution
https://www.youtube.com/watch?v=JhThDz0H7cI [Video contains solutions to all day 1 problems]
Solution
Denote the point diametrically opposite to a point through is the internal angle bisector of .
Denote the crosspoint of and through
To finishing the solution we need only to prove that
Denote is incenter of
Denote is the orthocenter of
Denote and are concyclic.
points and are collinear is symmetric to with respect
We use the lemma and complete the proof.
Lemma 1
Let acute triangle be given.
Let be the orthocenter of be the height.
Let be the circle is the diameter of
The point is symmetric to with respect to
The line meets again at .
Prove that
Proof
Let be the circle centered at with radius
The meets again at
Let meets again at .
We use Reim’s theorem for and lines and and get
(this idea was recommended by Leonid Shatunov).
The point is symmetric to with respect to
vladimir.shelomovskii@gmail.com, vvsss