Difference between revisions of "2013 AMC 12B Problems/Problem 22"
R00tsofunity (talk | contribs) |
|||
Line 43: | Line 43: | ||
For those who prefer a video solution: https://www.youtube.com/watch?v=vX0y9lRv9OM&t=312s | For those who prefer a video solution: https://www.youtube.com/watch?v=vX0y9lRv9OM&t=312s | ||
− | + | ||
− | + | ==Video Solution 2 by MOP 2024== | |
− | + | https://youtu.be/n5RfHdh3HTk | |
+ | |||
+ | ~r00tsOfUnity | ||
== See also == | == See also == | ||
Line 52: | Line 54: | ||
{{AMC12 box|year=2013|ab=B|num-b=21|num-a=23}} | {{AMC12 box|year=2013|ab=B|num-b=21|num-a=23}} | ||
− | + | [[Category:Intermediate Algebra Problems]] | |
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 01:17, 26 August 2023
Problem
Let and be integers. Suppose that the product of the solutions for of the equation
is the smallest possible integer. What is ?
Solution
Rearranging logs, the original equation becomes
By Vieta's Theorem, the sum of the possible values of is . But the sum of the possible values of is the logarithm of the product of the possible values of . Thus the product of the possible values of is equal to .
It remains to minimize the integer value of . Since , we can check that and work. Thus the answer is .
Video Solution
For those who prefer a video solution: https://www.youtube.com/watch?v=vX0y9lRv9OM&t=312s
Video Solution 2 by MOP 2024
~r00tsOfUnity
See also
2013 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.