Difference between revisions of "2022 USAJMO Problems/Problem 5"
Bennetthuang (talk | contribs) (→Solution 1) |
|||
Line 13: | Line 13: | ||
~BennettHuang | ~BennettHuang | ||
+ | |||
+ | ==See Also== | ||
+ | {{USAJMO newbox|year=2022|num-b=4|num-a=6}} | ||
+ | {{MAA Notice}} |
Latest revision as of 18:04, 6 October 2023
Problem
Find all pairs of primes for which and are both perfect squares.
Solution 1
We first consider the case where one of is even. If , and which doesn't satisfy the problem restraints. If , we can set and giving us . This forces so giving us the solution .
Now assume that are both odd primes. Set and so . Since , . Note that is an even integer and since and have the same parity, they both must be even. Therefore, for some positive even integer . On the other hand, and . Therefore, so , giving us a contradiction.
Therefore, the only solution to this problem is .
~BennettHuang
See Also
2022 USAJMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.