Difference between revisions of "2022 USAJMO Problems/Problem 5"
Bennetthuang (talk | contribs) (→Solution 1) |
Bennetthuang (talk | contribs) (→Solution 1) |
||
Line 6: | Line 6: | ||
− | Now assume that <math>p,q</math> are both odd primes. Set <math>p-q=x^2</math> and <math>pq-q=y^2</math> so <math>(pq-q)-(p-q)=y^2-x^2 \rightarrow</math> <math> | + | Now assume that <math>p,q</math> are both odd primes. Set <math>p-q=x^2</math> and <math>pq-q=y^2</math> so <math>(pq-q)-(p-q)=y^2-x^2 \rightarrow p(q-1)</math> <math>=(y+x)(y-x)</math>. Since <math>y+x>y-x</math>, <math>p | (x+y)</math>. Note that <math>q-1</math> is an even integer and since <math>y+x</math> and <math>y-x</math> have the same parity, they both must be even. Therefore, <math>x+y=pk</math> for some positive even integer <math>k</math>. On the other hand, <math>p>p-q=x^2 \rightarrow p>x</math> and <math>p^2-p>pq-q=y^2 \rightarrow p>y</math>. Therefore, <math>2p>x+y</math> so <math>x+y=p</math>, giving us a contradiction. |
Revision as of 13:22, 3 August 2023
Problem
Find all pairs of primes for which and are both perfect squares.
Solution 1
We first consider the case where one of is even. If equals 2, and which doesn't satisfy the problem restraints. If , we can set and giving us . This forces so giving us the solution .
Now assume that are both odd primes. Set and so . Since , . Note that is an even integer and since and have the same parity, they both must be even. Therefore, for some positive even integer . On the other hand, and . Therefore, so , giving us a contradiction.
Therefore, the only solution to this problem is .
~BennettHuang