Difference between revisions of "2000 AMC 12 Problems/Problem 5"

m (Solution: format fix the format fix (format fix 2: electric boogaloo))
Line 11: Line 11:
 
Thus <math>x-p = (2-p)-p = 2-2p</math>.
 
Thus <math>x-p = (2-p)-p = 2-2p</math>.
 
<math>\boxed{\mathbf{(C)}\ \ensuremath{2-2p}}</math>
 
<math>\boxed{\mathbf{(C)}\ \ensuremath{2-2p}}</math>
 +
 +
==Video Solution by Daily Dose of Math==
 +
 +
https://youtu.be/albUhCOwv3Y?si=4XcusOEp70EA6XKr
 +
 +
~Thesmartgreekmathdude
  
 
== See also ==
 
== See also ==

Revision as of 23:42, 14 July 2024

The following problem is from both the 2000 AMC 12 #5 and 2000 AMC 10 #9, so both problems redirect to this page.

Problem

If $|x - 2| = p$, where $x < 2$, then $x - p =$

$\textbf{(A)} \ -2 \qquad \textbf{(B)} \ 2 \qquad \textbf{(C)} \ 2-2p \qquad \textbf{(D)} \ 2p-2 \qquad \textbf{(E)} \ |2p-2|$

Solution

When $x < 2,$ $x-2$ is negative so $|x - 2| = 2-x = p$ and $x = 2-p$.

Thus $x-p = (2-p)-p = 2-2p$. $\boxed{\mathbf{(C)}\ \ensuremath{2-2p}}$

Video Solution by Daily Dose of Math

https://youtu.be/albUhCOwv3Y?si=4XcusOEp70EA6XKr

~Thesmartgreekmathdude

See also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png