Difference between revisions of "2003 AMC 10A Problems/Problem 9"

(Solution 3 (Lame??))
m
 
Line 5: Line 5:
 
<math> \mathrm{(A) \ } \sqrt{x}\qquad \mathrm{(B) \ } \sqrt[3]{x^{2}}\qquad \mathrm{(C) \ } \sqrt[27]{x^{2}}\qquad \mathrm{(D) \ } \sqrt[54]{x}\qquad \mathrm{(E) \ } \sqrt[81]{x^{80}} </math>
 
<math> \mathrm{(A) \ } \sqrt{x}\qquad \mathrm{(B) \ } \sqrt[3]{x^{2}}\qquad \mathrm{(C) \ } \sqrt[27]{x^{2}}\qquad \mathrm{(D) \ } \sqrt[54]{x}\qquad \mathrm{(E) \ } \sqrt[81]{x^{80}} </math>
  
=== Solution 1 ===
+
== Solution 1 ==
 
<math>\sqrt[3]{x\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{2}\cdot\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{3}}=\sqrt{x}</math>.  
 
<math>\sqrt[3]{x\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{2}\cdot\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{3}}=\sqrt{x}</math>.  
  
Line 12: Line 12:
 
<math>\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}=\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}=\sqrt[3]{x\sqrt{x}}= \sqrt{x} \Rightarrow \boxed{\mathrm{(A)}\ \sqrt{x}}</math>
 
<math>\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}=\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}=\sqrt[3]{x\sqrt{x}}= \sqrt{x} \Rightarrow \boxed{\mathrm{(A)}\ \sqrt{x}}</math>
  
=== Solution 2 ===
+
== Solution 2 ==
 
We know that <math>\sqrt[3]{x\sqrt{x}} = \sqrt[3]{x\cdot(x^\frac{1}{2})} = \sqrt[3]{x^\frac{3}{2}} = x^\frac{1}{2}</math> We plug this into <math>\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}</math> and get <math>\sqrt[3]{x\sqrt[3]{x\cdot(x^\frac{1}{2})}}</math>. Again, we substitute and get <math>\sqrt[3]{x\cdot(x^\frac{1}{2})}</math>. We substitute one more time and get <math>x^\frac{1}{2} = \boxed{(A) \sqrt{x}}</math>.
 
We know that <math>\sqrt[3]{x\sqrt{x}} = \sqrt[3]{x\cdot(x^\frac{1}{2})} = \sqrt[3]{x^\frac{3}{2}} = x^\frac{1}{2}</math> We plug this into <math>\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}</math> and get <math>\sqrt[3]{x\sqrt[3]{x\cdot(x^\frac{1}{2})}}</math>. Again, we substitute and get <math>\sqrt[3]{x\cdot(x^\frac{1}{2})}</math>. We substitute one more time and get <math>x^\frac{1}{2} = \boxed{(A) \sqrt{x}}</math>.
  
===Solution 3 (Lame??)===
+
==Solution 3 (Lame??)==
 
WLOG, plug in some random square number like <math> 9 </math> or <math> 4 </math>, and the output you get after simplifying the expression will always be the square root of the number, so the answer is just <math> \boxed{(A) \sqrt{x}}</math>.
 
WLOG, plug in some random square number like <math> 9 </math> or <math> 4 </math>, and the output you get after simplifying the expression will always be the square root of the number, so the answer is just <math> \boxed{(A) \sqrt{x}}</math>.
  

Latest revision as of 17:47, 28 July 2023

Problem

Simplify $\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}$.

$\mathrm{(A) \ } \sqrt{x}\qquad \mathrm{(B) \ } \sqrt[3]{x^{2}}\qquad \mathrm{(C) \ } \sqrt[27]{x^{2}}\qquad \mathrm{(D) \ } \sqrt[54]{x}\qquad \mathrm{(E) \ } \sqrt[81]{x^{80}}$

Solution 1

$\sqrt[3]{x\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{2}\cdot\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{3}}=\sqrt{x}$.

Therefore:

$\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}=\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}=\sqrt[3]{x\sqrt{x}}= \sqrt{x} \Rightarrow \boxed{\mathrm{(A)}\ \sqrt{x}}$

Solution 2

We know that $\sqrt[3]{x\sqrt{x}} = \sqrt[3]{x\cdot(x^\frac{1}{2})} = \sqrt[3]{x^\frac{3}{2}} = x^\frac{1}{2}$ We plug this into $\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}$ and get $\sqrt[3]{x\sqrt[3]{x\cdot(x^\frac{1}{2})}}$. Again, we substitute and get $\sqrt[3]{x\cdot(x^\frac{1}{2})}$. We substitute one more time and get $x^\frac{1}{2} = \boxed{(A) \sqrt{x}}$.

Solution 3 (Lame??)

WLOG, plug in some random square number like $9$ or $4$, and the output you get after simplifying the expression will always be the square root of the number, so the answer is just $\boxed{(A) \sqrt{x}}$.

~Darth_Cadet

Video Solution

https://www.youtube.com/watch?v=8DMxo2pi1h8 ~David

See Also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png