Difference between revisions of "Factor Theorem"
Line 8: | Line 8: | ||
Apply [[Remainder Theorem]] to get <math>P(x) = (x - a)Q(x) + R(x)</math>, where <math>Q(x)</math> is a polynomial with <math>\deg(Q(x)) = \deg(P(x)) - 1</math> and <math>R(x)</math> is the remainder polynomial such that <math>0\le\deg(R(x)) < \deg(x - a) = 1</math>. This means that <math>R(x)</math> can be at most a [[constant]] polynomial. | Apply [[Remainder Theorem]] to get <math>P(x) = (x - a)Q(x) + R(x)</math>, where <math>Q(x)</math> is a polynomial with <math>\deg(Q(x)) = \deg(P(x)) - 1</math> and <math>R(x)</math> is the remainder polynomial such that <math>0\le\deg(R(x)) < \deg(x - a) = 1</math>. This means that <math>R(x)</math> can be at most a [[constant]] polynomial. | ||
− | Substitute <math>x = a</math> and get <math>P(a) = (a - a)Q(a) + R(a) = 0\Rightarrow R(a) = 0</math>. Since <math>R(x)</math> is a constant polynomial, <math>R(x) = 0</math> for all <math>x</math>. | + | Substitute <math>x = a</math> and get <math>P(a) = (a - a)Q(a) + R(a) = 0\Rightarrow R(a) = 0</math>. Since <math>R(x)</math> is a constant polynomial, <math>R(x) = 0</math> for all <math>x</math>. |
Therefore, <math>P(x) = (x - a)Q(x)</math>, which shows that <math>x - a</math> is a factor of <math>P(x)</math>. | Therefore, <math>P(x) = (x - a)Q(x)</math>, which shows that <math>x - a</math> is a factor of <math>P(x)</math>. | ||
{{stub}} | {{stub}} | ||
− | + | ||
[[Category:Algebra]] | [[Category:Algebra]] | ||
[[Category:Polynomials]] | [[Category:Polynomials]] | ||
[[Category:Theorems]] | [[Category:Theorems]] |
Revision as of 12:59, 18 July 2023
The Factor Theorem says that if is a polynomial, then is a factor of if .
Proof
If is a factor of , then , where is a polynomial with . Then .
Now suppose that .
Apply Remainder Theorem to get , where is a polynomial with and is the remainder polynomial such that . This means that can be at most a constant polynomial.
Substitute and get . Since is a constant polynomial, for all .
Therefore, , which shows that is a factor of .
This article is a stub. Help us out by expanding it.