Difference between revisions of "2023 IMO Problems/Problem 4"
(→Solution) |
(→Solution) |
||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
We first solve for <math>a_1.</math> <math>a_1 = \sqrt{(x_1)(\frac{1}{x_1})} = \sqrt{1} = 1.</math> | We first solve for <math>a_1.</math> <math>a_1 = \sqrt{(x_1)(\frac{1}{x_1})} = \sqrt{1} = 1.</math> | ||
− | Now we solve for <math>a_{n+1}</math> in terms of <math>a_n</math> and <math>x.</math> <math>a_{n+1} = \ | + | Now we solve for <math>a_{n+1}</math> in terms of <math>a_n</math> and <math>x.</math> <math>a_{n+1}^2\\ = (\sum^{n+1}_{k=1}x_k)(\sum^{n+1}_{k=1}\frac1{x_k}) \\= (x_{n+1}+\sum^{n}_{k=1}x_k)(\frac{1}{x_{n+1}}+\sum^{n}_{k=1}\frac1{x_k}) \\= 1 + \frac{1}{x_{n+1}} \sum^{n}_{k=1}x_k+x_{n+1}\sum^{n}_{k=1}\frac1{x_k} + (\sum^{n}_{k=1}x_k)(\sum^{n}_{k=1}\frac1{x_k})\\=1+\frac{1}{x_{n+1}} \sum^{n}_{k=1}x_k+x_{n+1}\sum^{n}_{k=1}\frac1{x_k}+a_n^2</math> |
+ | By AM-GM, <math>a_{n+1}^2 \ge 1+a_n^2 + 2 \sqrt{(\frac{1}{x_{n+1}} \sum^{n}_{k=1}x_k)(x_{n+1} \sum^{n}_{k=1} \frac1{x_k})} = 1 + a_n^2 + 2a_n = (a_n+1)^2 \\ </math> |
Revision as of 00:01, 14 July 2023
Problem
Let be pairwise different positive real numbers such that is an integer for every . Prove that .
Solution
We first solve for Now we solve for in terms of and By AM-GM, $a_{n+1}^2 \ge 1+a_n^2 + 2 \sqrt{(\frac{1}{x_{n+1}} \sum^{n}_{k=1}x_k)(x_{n+1} \sum^{n}_{k=1} \frac1{x_k})} = 1 + a_n^2 + 2a_n = (a_n+1)^2 \$ (Error compiling LaTeX. Unknown error_msg)