Difference between revisions of "2000 AIME II Problems/Problem 7"

m
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Suppose that <math>x,</math> <math>y,</math> and <math>z</math> are three positive numbers that satisfy the equations <math>xyz = 1,</math> <math>x + \frac {1}{z} = 5,</math> and <math>y + \frac {1}{x} = 29.</math> Then <math>z + \frac {1}{y} = \frac {m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>.
+
Given that <center><math>\frac 1{2!17!}+\frac 1{3!16!}+\frac 1{4!15!}+\frac 1{5!14!}+\frac 1{6!13!}+\frac 1{7!12!}+\frac 1{8!11!}+\frac 1{9!10!}=\frac N{1!18!}</math></center> find the greatest integer that is less than <math>\frac N{100}</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 18:29, 11 November 2007

Problem

Given that

$\frac 1{2!17!}+\frac 1{3!16!}+\frac 1{4!15!}+\frac 1{5!14!}+\frac 1{6!13!}+\frac 1{7!12!}+\frac 1{8!11!}+\frac 1{9!10!}=\frac N{1!18!}$

find the greatest integer that is less than $\frac N{100}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions