Difference between revisions of "Gauss line"
(Created page with "The Gauss line (or Gauss–Newton line) is the line joining the midpoints of the three diagonals of a complete quadrilateral. ==Existence of the Gauss line== The complete qu...") |
(→Existence of the Gauss line) |
||
Line 2: | Line 2: | ||
==Existence of the Gauss line== | ==Existence of the Gauss line== | ||
− | The complete quadilateral <math>ABCDEF (E = AD \cap BC, F = AB \cap CD)</math> be given. | + | [[File:Gauss line 1.png|400px|right]] |
− | Denote <math>O | + | The complete quadilateral <math>ABCDEF</math> <math>(E = AD \cap BC, F = AB \cap CD)</math> be given. |
+ | Denote <math>O, O_1, O_2</math> the midpoints of <math>AC, BD, EF,</math> respectively. | ||
− | + | Denote <math>H, H_1, H_2, H_3</math> the orthocenters of the <math>\triangle CDE, \triangle BCF, \triangle ABE, \triangle ADF,</math> respectively. | |
− | a) points <math>O, O_1, O_2</math> are collinear; | + | Denote <math>\omega, \Omega, \theta, \alpha,</math> and <math>\beta</math> the circles with diameters <math>AC, BD, EF, CD,</math> and <math>CE,</math> respectively. |
+ | |||
+ | Prove a) points <math>O, O_1, O_2</math> are collinear; | ||
b) <math>OO_1 \perp HH_1;</math> | b) <math>OO_1 \perp HH_1;</math> | ||
− | + | ||
c) points <math>H, H_1, H_2, H_3</math> are collinear. | c) points <math>H, H_1, H_2, H_3</math> are collinear. | ||
<i><b>Proof</b></i> | <i><b>Proof</b></i> | ||
− | Let <cmath>C_1 \in AD, CC_1 \perp | + | Let <cmath>C_1 \in AD, CC_1 \perp AD, D_1 \in BC, DD_1 \perp BC, E_1 \in CD, EE_1 \perp CD \implies</cmath> |
− | <cmath>H = CC_1 \cap DD_1 \cap EE_1, C_1 \in \alpha, D_1 \in \alpha, C_1 \in \beta, E_1 \in \ | + | <cmath>H = CC_1 \cap DD_1 \cap EE_1, C_1 \in \alpha, D_1 \in \alpha, C_1 \in \beta, E_1 \in \beta \implies</cmath> |
<math>H</math> is the radical center of <math>\omega, \Omega,</math> and <math>\alpha \implies H</math> lies on the radical axes of <math>\omega</math> and <math>\Omega.</math> | <math>H</math> is the radical center of <math>\omega, \Omega,</math> and <math>\alpha \implies H</math> lies on the radical axes of <math>\omega</math> and <math>\Omega.</math> | ||
Line 23: | Line 26: | ||
Similarly, using circles with diameters <math>BC</math> and <math>FC</math> one can prove that <math>H_1</math> lies on the radical axes of <math>\omega</math> and <math>\Omega</math> and on the radical axes of <math>\omega</math> and <math>\theta.</math> | Similarly, using circles with diameters <math>BC</math> and <math>FC</math> one can prove that <math>H_1</math> lies on the radical axes of <math>\omega</math> and <math>\Omega</math> and on the radical axes of <math>\omega</math> and <math>\theta.</math> | ||
− | Therefore <math>HH_1 \perp OO_1, HH_1 \perp OO_2 \implies</math> points <math>O, O_1,</math> and <math>O_2</math> are collinear | + | Therefore <math>HH_1 \perp OO_1, HH_1 \perp OO_2 \implies</math> points <math>O, O_1,</math> and <math>O_2</math> are collinear. |
− | Similarly, one can prove that <math>H_2</math> and <math>H_3</math> lie on the radical axes of <math>\omega</math> and <math>\Omega \implies </math> points H, H_1, H_2 | + | |
+ | It is clear that <math>HH_1</math> is the perpendicular to the line <math>OO_1O_2.</math>. | ||
+ | |||
+ | Similarly, one can prove that <math>H_2</math> and <math>H_3</math> lie on the radical axes of <math>\omega</math> and <math>\Omega \implies </math> points <math>H, H_1, H_2</math> and <math>H_3</math> are collinear. | ||
+ | *[[Steiner line]] | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Latest revision as of 05:35, 26 April 2023
The Gauss line (or Gauss–Newton line) is the line joining the midpoints of the three diagonals of a complete quadrilateral.
Existence of the Gauss line
The complete quadilateral be given. Denote the midpoints of respectively.
Denote the orthocenters of the respectively.
Denote and the circles with diameters and respectively.
Prove a) points are collinear;
b)
c) points are collinear.
Proof
Let is the radical center of and lies on the radical axes of and
is the radical center of and lies on the radical axes of and
Similarly, using circles with diameters and one can prove that lies on the radical axes of and and on the radical axes of and
Therefore points and are collinear.
It is clear that is the perpendicular to the line .
Similarly, one can prove that and lie on the radical axes of and points and are collinear.
vladimir.shelomovskii@gmail.com, vvsss