Difference between revisions of "2023 USAMO Problems/Problem 2"

(Undo last change: I am an idiot)
(Solution: Specifying why the solution cannot be a constant)
Line 45: Line 45:
 
</cmath>
 
</cmath>
  
For both of these derivatives, we see that the input to the function does not matter: it will return the same result regardless of input. Therefore, the functions <math>f'</math> and <math>f''</math> must be constants, and <math>f</math> must be a linear equation. That means we can model <math>f(x)</math> like so:
+
For both of these derivatives, we see that the input to the function does not matter: it will return the same result regardless of input. Therefore, the functions <math>f'</math> and <math>f''</math> must be constants, and <math>f</math> must be a linear equation or a constant. We know it is not a constant because if it was, the problem could be reduced to a linear equation with two unknowns, <math>f</math> and <math>x</math>, making <math>f</math> depend on <math>x</math>, which is not a constant function. That means we can model <math>f(x)</math> like so:
  
 
<cmath>
 
<cmath>
Line 104: Line 104:
 
<math>\square</math>
 
<math>\square</math>
  
~ cogsandsquigs
+
~cogsandsquigs

Revision as of 10:33, 7 April 2023

Problem 2

Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all functions $f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}$ such that, for all $x, y \in \mathbb{R}^{+}$,\[f(xy + f(x)) = xf(y) + 2\]

Solution

First, let us plug in some special points; specifically, plugging in $x=0$ and $x=1$, respectively:

\begin{align}     f(f(0)) &= 2 \\     f(y + f(1)) &= f(y) + 2 \end{align}

Next, let us find the first and second derivatives of this function. First, with (2), we isolate $f(y)$ one one side

\begin{align*}    f(y) = f(y + f(1)) - 2 \end{align*}

and then take the derivative:

\begin{align*}     \dfrac{\mathrm{d}f}{\mathrm{d}y}     &=\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1)) - 2\right] \\     &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1))\right] - \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[2\right] \\     &= f'(y + f(1))\cdot\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[y + f(1)\right] \\     &= f'(y + f(1))\cdot(1)\\     f'(y) &= f'(y + f(1))\\ \end{align*}

The second derivative is as follows:

\begin{align*}     \dfrac{\mathrm{d}^2f}{\mathrm{d}y^2}     &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[\dfrac{\mathrm{d}f}{\mathrm{d}y}\right] \\     &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f'(y + f(1))\right] \\     &= f''(y + f(1))\cdot\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[y + f(1)\right] \\     f''(y) &= f''(y + f(1))\\ \end{align*}

For both of these derivatives, we see that the input to the function does not matter: it will return the same result regardless of input. Therefore, the functions $f'$ and $f''$ must be constants, and $f$ must be a linear equation or a constant. We know it is not a constant because if it was, the problem could be reduced to a linear equation with two unknowns, $f$ and $x$, making $f$ depend on $x$, which is not a constant function. That means we can model $f(x)$ like so:

\begin{align*}     f(x) = ax + b \end{align*}

Via (1), we get the following:

\begin{align*}     f(f(0)) &= 2 \\     a(a(0) + b) + b &= 2 \\     ab + b &= 2 \end{align*}

And via (2),

\begin{align*}     f(y + f(1)) &= f(y) + 2 \\     a(y + a(1) + b) + b &= ay + b + 2 \\     ay + a^2 + ab + b &= ay + b + 2 \\     a^2 + ab &= 2 \\ \end{align*}

Setting these equations equal to each other,

\begin{align*}     ab + b &= a^2 + ab \\     b &= a^2 \\ \end{align*}

Therefore,

\begin{align*}     ab + b &= 2 \\     a^3 + a^2 &= 2 \\ \end{align*}

There are three solutions to this equation: $a = 1$, $a = -1 + i$, and $a = -1 - i$. Knowing that $b = a^2$, the respective $b$ values are $b = 1$, $b = -2i$, and $b = 2i$. Thus, $f(x)$ could be the following:

\begin{align*}     f(x) &= x + 1 \\     f(x) &= x(-1 + i) - 2i \\     f(x) &= x(-1 - i) + 2i \\ \end{align*}

$\square$

~cogsandsquigs