Difference between revisions of "2008 AMC 8 Problems/Problem 22"

(Solution 1)
(Solution 1)
Line 9: Line 9:
  
 
==Solution 1==
 
==Solution 1==
EDIT
 
 
Instead of finding n, we find <math>x=\frac{n}{3}</math>. We want <math>x</math> and <math>9x</math> to be three-digit whole numbers. The smallest three-digit whole number is <math>100</math>, so that is our minimum value for <math>x</math>, since if <math>x \in \mathbb{Z^+}</math>, then <math>9x \in \mathbb{Z^+}</math>. The largest three-digit whole number divisible by <math>9</math> is <math>999</math>, so our maximum value for <math>x</math> is <math>\frac{999}{9}=111</math>. There are <math>12</math> whole numbers in the closed set <math>\left[100,111\right]</math> , so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
 
Instead of finding n, we find <math>x=\frac{n}{3}</math>. We want <math>x</math> and <math>9x</math> to be three-digit whole numbers. The smallest three-digit whole number is <math>100</math>, so that is our minimum value for <math>x</math>, since if <math>x \in \mathbb{Z^+}</math>, then <math>9x \in \mathbb{Z^+}</math>. The largest three-digit whole number divisible by <math>9</math> is <math>999</math>, so our maximum value for <math>x</math> is <math>\frac{999}{9}=111</math>. There are <math>12</math> whole numbers in the closed set <math>\left[100,111\right]</math> , so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
  

Revision as of 15:04, 23 March 2023

Problem

For how many positive integer values of $n$ are both $\frac{n}{3}$ and $3n$ three-digit whole numbers?

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ 21\qquad \textbf{(C)}\ 27\qquad \textbf{(D)}\ 33\qquad \textbf{(E)}\ 34$

Solution 1

Instead of finding n, we find $x=\frac{n}{3}$. We want $x$ and $9x$ to be three-digit whole numbers. The smallest three-digit whole number is $100$, so that is our minimum value for $x$, since if $x \in \mathbb{Z^+}$, then $9x \in \mathbb{Z^+}$. The largest three-digit whole number divisible by $9$ is $999$, so our maximum value for $x$ is $\frac{999}{9}=111$. There are $12$ whole numbers in the closed set $\left[100,111\right]$ , so the answer is $\boxed{\textbf{(A)}\ 12}$.

- ColtsFan10

Solution 2

We can set the following inequalities up to satisfy the conditions given by the question, $100 \leq \frac{n}{3} \leq 999$, and $100 \leq 3n \leq 999$. Once we simplify these and combine the restrictions, we get the inequality, $300 \leq n \leq 333$. Now we have to find all multiples of 3 in this range for $\frac{n}{3}$ to be an integer. We can compute this by setting $\frac{n} {3}=x$, where $x \in \mathbb{Z^+}$. Substituting $x$ for $n$ in the previous inequality, we get, $100 \leq x \leq 111$, and there are $111-100+1$ integers in this range giving us the answer, $\boxed{\textbf{(A)}\ 12}$.

- kn07

Video Solution by OmegaLearn

https://youtu.be/rQUwNC0gqdg?t=230

See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png