Difference between revisions of "User:John0512"
(→2021 AMC 8) |
(Tag: Undo) |
||
Line 1: | Line 1: | ||
==2021 AMC 8== | ==2021 AMC 8== | ||
− | + | 2021 AMC 8 problems and solutions. The test has not been held, and will never be held. | |
==Problems== | ==Problems== |
Latest revision as of 01:03, 12 March 2023
2021 AMC 8
2021 AMC 8 problems and solutions. The test has not been held, and will never be held.
Problems
ERROR: Content not found
Solutions
ERROR: Content not found
Results
Highest Score: 0.00
Distinguished Honor Roll: 0.00
Honor Roll: 0.00
Average Score: 0.00
Standard Deviation: 0.00
Unnamed Theorem
I have something called the Unnamed Theorem (which I did not name as I have not confirmed that this theorem has not existed before).
Claim: Given a set where is a positive integer, the number of ways to choose a subset of then permute said subset is
Proof: The number of ways to choose a subset of size and then permute it is . Therefore, the number of ways to choose any subset of is This is also equal to by symmetry across . This is also Note that is defined as , so our expression becomes We claim that for all positive integers .
Since the reciprocal of a factorial decreases faster than a geometric series, we have that . The right side we can evaluate as , which is always less than or equal to . This means that the terms being subtracted are always strictly less than , so we can simply write it as
Example: How many ways are there 5 distinct clones of mathicorn to each either accept or reject me, then for me to go through the ones that accepted me in some order?
Solution to example: This is equivalent to the Unnamed Theorem for , so our answer is .
Solution 2: Since I am not orz, all 5 clones will reject me, so the answer is . Note that this contradicts with the answer given by the Unnamed Theorem.