Difference between revisions of "2023 AIME I Problems/Problem 8"
MRENTHUSIASM (talk | contribs) (Prioritized solutions with diagrams and pushed back advanced solutions with complex numbers.) |
MRENTHUSIASM (talk | contribs) |
||
Line 4: | Line 4: | ||
==Diagram== | ==Diagram== | ||
<asy> | <asy> | ||
− | /* Made by MRENTHUSIASM */ | + | /* Made by MRENTHUSIASM; inspired by Math Jams. */ |
size(300); | size(300); | ||
Line 41: | Line 41: | ||
This solution refers to the <b>Diagram</b> section. | This solution refers to the <b>Diagram</b> section. | ||
+ | Let <math>O</math> be the incenter of <math>ABCD</math> for which <math>\odot O</math> is tangent to <math>\overline{DA},\overline{AB},</math> and <math>\overline{BC}</math> at <math>X,Y,</math> and <math>Z,</math> respectively. Moreover, suppose that <math>R,S,</math> and <math>T</math> are the feet of the perpendiculars from <math>P</math> to <math>\overleftrightarrow{DA},\overleftrightarrow{AB},</math> and <math>\overightarrow{BC},</math> respectively, such that <math>\overline{RT}</math> intersects <math>\odot O</math> at <math>P</math> and <math>Q.</math> | ||
+ | We obtain the following diagram: | ||
==Solution 2== | ==Solution 2== |
Revision as of 16:34, 9 February 2023
Problem
Rhombus has There is a point on the incircle of the rhombus such that the distances from to the lines and are and respectively. Find the perimeter of
Diagram
~MRENTHUSIASM
Solution 1
This solution refers to the Diagram section.
Let be the incenter of for which is tangent to and at and respectively. Moreover, suppose that and are the feet of the perpendiculars from to and $\overightarrow{BC},$ (Error compiling LaTeX. Unknown error_msg) respectively, such that intersects at and
We obtain the following diagram:
Solution 2
Label the points of the rhombus to be , , , and and the center of the incircle to be so that , , and are the distances from point to side , side , and respectively. Through this, we know that the distance from the two pairs of opposite lines of rhombus is and circle has radius .
Call the feet of the altitudes from P to side , side , and side to be , , and respectively. Additionally, call the feet of the altitudes from to side , side , and side to be , , and respectively.
Draw a line segment from to so that it is perpendicular to . Notice that this segment length is equal to and is by Pythagorean Theorem.
Similarly, perform the same operations with side to get .
By equal tangents, . Now, label the length of segment and .
Using Pythagorean Theorem again, we get
Which also gives us and .
Since the diagonals of the rhombus intersect at and are angle bisectors and are also perpendicular to each other, we can get that
~Danielzh
Solution 3
Denote by the center of . We drop an altitude from to that meets at point . We drop altitudes from to and that meet and at and , respectively. We denote . We denote the side length of as .
Because the distances from to and are and , respectively, and , the distance between each pair of two parallel sides of is . Thus, and .
We have
Thus, .
In , we have . Thus,
Taking the imaginary part of this equation and plugging and into this equation, we get
We have
Because is on the incircle of , . Plugging this into , we get the following equation
By solving this equation, we get and . Therefore, .
Therefore, the perimeter of is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.