Difference between revisions of "2023 AIME I Problems/Problem 5"

(Solution 3 (Analytic geometry))
(Solution 5 (Double Angle))
Line 124: Line 124:
  
 
Notice that <math>\angle APC</math> and <math>\angle BPD</math> are both <math>90^\circ</math>
 
Notice that <math>\angle APC</math> and <math>\angle BPD</math> are both <math>90^\circ</math>
 +
 +
==Solution 6 (Similar Triangles)==
 +
 +
\begin{center}
 +
    \begin{tikzpicture}
 +
        \draw (0,0) circle (4cm);
 +
        \draw (2.8284, -2.8284) -- (2.8284, 2.8284) -- (-2.8284, 2.8284) -- (-2.8284, -2.8284) -- cycle;
 +
        \draw (0, 0) node[anchor=north] {<math>O</math>};
 +
        \draw (-2.8284, -2.8284) node[anchor=north east] {<math>D</math>};
 +
        \draw (2.8284, -2.8284) node[anchor=north west] {<math>C</math>};
 +
        \draw (2.8284, 2.8284) node[anchor=south west] {<math>B</math>};
 +
        \draw (-2.8284, 2.8284) node[anchor=south east] {<math>A</math>};
 +
        \draw (-0.531, 3.965)
 +
        node[anchor=south] {<math>P</math>};
 +
        \draw (-2.8284, -2.8284) -- (2.8284, 2.8284) -- (-0.531, 3.965) -- cycle;
 +
        \draw (2.8284, -2.8284) -- (-2.8284, 2.8284) -- (-0.531, 3.965) -- cycle;
 +
        \draw[dashed] (-0.531, 3.965) -- (1.717, 1.717);
 +
        \draw[dashed] (-0.531, 3.965) -- (-2.248, 2.248);
 +
        \draw (-2.248, 2.248) node[anchor=north east] {<math>X</math>};
 +
        \draw (1.717, 1.717) node[anchor=north west] {<math>Y</math>};
 +
    \end{tikzpicture}
 +
\end{center}
 +
 +
Let the center of the circle be <math>O</math>, and the radius of the circle be <math>r</math>. Since <math>ABCD</math> is a rhombus with diagonals <math>2r</math> and <math>2r</math>, its area is <math>\dfrac{1}{2}(2r)(2r) = 2r^2</math>. Since <math>AC</math> and <math>BD</math> are diameters of the circle, <math>\triangle ACP</math> and <math>\triangle BDP</math> are right triangles. Let <math>X</math> and <math>Y</math> be the foot of the altitudes to <math>AC</math> and <math>BD</math>, respectively. We have
 +
<cmath>[\triangle APC] = \frac{1}{2}(PA)(PC) = \frac{1}{2}(PX)(AC),</cmath>
 +
so <math>PX = \dfrac{(PA)(PC)}{AC} = \dfrac{28}{r}</math>. Similarly,
 +
<cmath>[\triangle BPD] = \frac{1}{2}(PB)(PD) = \frac{1}{2}(PY)(PB),</cmath>
 +
so <math>PY = \dfrac{(PB)(PD)}{BD} = \dfrac{45}{r}</math>. Since <math>\triangle APX \sim \triangle PCX,</math>
 +
<cmath>\frac{AX}{PX} = \frac{PX}{XC}.</cmath>
 +
But <math>PXOY</math> is a rectangle, so <math>PY</math> = <math>XO</math>, and our similarity becomes
 +
<cmath>\frac{AO - XO}{PX} = \frac{PX}{OC + XO}</cmath>
 +
<cmath>\frac{r - PY}{PX} = \frac{PX}{r + PY}.</cmath>
 +
Cross multiplying and rearranging gives us <math>r^2 = PX^2 + PY^2 = \left(\dfrac{28}{r}\right)^2 + \left(\dfrac{45}{r}\right)^2</math>, which rearranges to <math>r^4 = 2809</math>. Therefore <math>[ABCD] = 2r^2 = \boxed{106}</math>.
 +
 +
~Cantalon

Revision as of 14:16, 8 February 2023

Problem (not official; when the official problem statement comes out, please update this page; to ensure credibility until the official problem statement comes out, please add an O if you believe this is correct and add an X if you believe this is incorrect):

Let $P$ be a point on the circle circumscribing square $ABCD$ that satisfies $PA\cdot PC=56$ and $PB\cdot PD=90$. Find the area of $ABCD$.

Solution (Ptolemy's Theorem)

Ptolemy's theorem states that for cyclic quadrilateral $WXYZ$, $WX\cdot YZ + XY\cdot WZ = WY\cdot XZ$.

We may assume that $P$ is between $B$ and $C$. Let $PA = a$, $PB = b$, $PC = C$, $PD = d$, and $AB = s$. We have $a^2 + c^2 = AC^2 = 2s^2$, because $AC$ is a diameter of the circle. Similarly, $b^2 + d^2 = 2s^2$. Therefore, $(a+c)^2 = a^2 + c^2 + 2ac = 2s^2 + 2(56) = 2s^2 + 112$. Similarly, $(b+d)^2 = 2s^2 + 180$.

By Ptolemy's Theorem on $PCDA$, $as + cs = ds\sqrt{2}$, and therefore $a + c = d\sqrt{2}$. By Ptolemy's on $PBAD$, $bs + ds = as\sqrt{2}$, and therefore $b + d = a\sqrt{2}$. By squaring both equations, we obtain

\[2d^2 = (a+c)^2 = 2s^2 + 112\] \[2a^2 = (b+d)^2 = 2s^2 + 180.\]

Thus, $a^2 = s^2 + 90$, and $d^2 = s^2 + 56$. Plugging these values into $a^2 + c^2 = b^2 + d^2 = 2s^2$, we obtain $c^2 = s^2 - 90$, and $b^2 = s^2 - 56$. Now, we can solve using $a$ and $c$ (though using $b$ and $d$ yields the same solution for $s$).

\[(\sqrt{s^2 + 90})(\sqrt{s^2 - 90}) = ac = 56\] \[(s^2 + 90)(s^2 - 90) = 56^2\] \[s^4 = 90^2 + 56^2 = 106^2\] \[s^2 = 106.\]

The answer is $\boxed{106}$.

~mathboy100

Solution 2 (Circle Properties and Half-Angle Formula)

Drop a height from point $P$ to line $\overline{AC}$ and line $\overline{BC}$. Call these two points to be $X$ and $Y$, respectively. Notice that the intersection of the diagonals of $\square ABCD$ meets at a right angle at the center of the circumcircle, call this intersection point $O$.

Since $OXPY$ is a rectangle, $OX$ is the distance from $P$ to line $\overline{BD}$. We know that $\tan{\angle{YOX}} = \frac{PX}{XO} = \frac{28}{45}$ by triangle area and given information. Then, notice that the measure of $\angle{OCP}$ is half of $\angle{XOY}$.

Using the half-angle formula for tangent,

\begin{align*} \frac{(2*\tan{\angle{OCP}})}{(1-\tan^2{\angle{OCP}})} = \tan{\angle{YOX}} = \frac{28}{45} \\ 14\tan^2{\angle{OCP}} + 45\tan{\angle{OCP}} - 14 = 0 \end{align*}

Solving the equation above, we get that $\tan{\angle{OCP}} = -7/2$ or $2/7$. Since this value must be positive, we pick $\frac{2}{7}$. Then, $\frac{PA}{PC} = 2/7$ (since $\triangle CAP$ is a right triangle with line $\overline{AC}$ also the diameter of the circumcircle) and $PA * PC = 56$. Solving we get $PA = 4$, $PC = 14$, giving us a diagonal of length $\sqrt{212}$ and area $\boxed{106}$.

~Danielzh

Solution 3 (Analytic geometry)

Denote by $x$ the half length of each side of the square. We put the square to the coordinate plane, with $A = \left( x, x \right)$, $B = \left( - x , x \right)$, $C = \left( - x , - x \right)$, $D = \left( x , - x \right)$.

The radius of the circumcircle of $ABCD$ is $\sqrt{2} x$. Denote by $\theta$ the argument of point $P$ on the circle. Thus, the coordinates of $P$ are $P = \left( \sqrt{2} x \cos \theta , \sqrt{2} x \sin \theta \right)$.

Thus, the equations $PA \cdot PC = 56$ and $PB \cdot PD = 90$ can be written as \begin{align*} \sqrt{\left( \sqrt{2} x \cos \theta - x \right)^2 + \left( \sqrt{2} x \sin \theta - x \right)^2} \cdot \sqrt{\left( \sqrt{2} x \cos \theta + x \right)^2 + \left( \sqrt{2} x \sin \theta + x \right)^2} & = 56 \\ \sqrt{\left( \sqrt{2} x \cos \theta + x \right)^2 + \left( \sqrt{2} x \sin \theta - x \right)^2} \cdot \sqrt{\left( \sqrt{2} x \cos \theta - x \right)^2 + \left( \sqrt{2} x \sin \theta + x \right)^2} & = 90 \end{align*}

These equations can be reformulated as \begin{align*} x^4 \left( 4 - 2 \sqrt{2} \left( \cos \theta + \sin \theta \right) \right) \left( 4 + 2 \sqrt{2} \left( \cos \theta + \sin \theta \right) \right) & = 56^2  \\ x^4 \left( 4 + 2 \sqrt{2} \left( \cos \theta - \sin \theta \right) \right) \left( 4 - 2 \sqrt{2} \left( \cos \theta - \sin \theta \right) \right) & = 90^2 \end{align*}

These equations can be reformulated as \begin{align*} 2 x^4 \left( 1 - 2 \cos \theta  \sin \theta \right) & = 28^2 \hspace{1cm} (1) \\ 2 x^4 \left( 1 + 2 \cos \theta  \sin \theta \right) & = 45^2 \hspace{1cm} (2) \end{align*}

Taking $\frac{(1)}{(2)}$, by solving the equation, we get \[ 2 \cos \theta \sin \theta = \frac{45^2 - 28^2}{45^2 + 28^2} . \hspace{1cm} (3) \]

Plugging (3) into (1), we get \begin{align*} {\rm Area} \ ABCD & = \left( 2 x \right)^2 \\ & = 4 \sqrt{\frac{28^2}{2 \left( 1 - 2 \cos \theta \sin \theta \right)}} \\ & = 2 \sqrt{45^2 + 28^2} \\ & = 2 \cdot 53 \\ & = \boxed{\textbf{(106) }} . \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Solution 4 (Law of Cosines)

WLOG, let $P$ be on minor arc $\overarc {AB}$. Let $r$ and $O$ be the radius and center of the circumcircle respectively, and let $\theta = \angle AOP$.

By the Pythagorean Theorem, the area of the square is $2r^2$. We can use the Law of Cosines on isosceles triangles $\triangle AOP, \, \triangle COP, \, \triangle BOP, \, \triangle DOP$ to get

\begin{align*} 	 PA^2 &= 2r^2(1 - \cos \theta), \\	 PC^2 &= 2r^2(1 - \cos (180  - \theta)) = 2r^2(1 + \cos \theta), \\	 PB^2 &= 2r^2(1 - \cos (90 - \theta)) = 2r^2(1 - \sin \theta), \\	 PD^2 &= 2r^2(1 - \cos (90 + \theta)) = 2r^2(1 + \sin \theta).	 \end{align*}

Taking the products of the first two and last two equations, respectively, \[56^2 = (PA \cdot PC)^2 = 4r^4(1 - \cos \theta)(1 + \cos \theta) = 4r^4(1 - \cos^2 \theta) = 4r^4 \sin^2 \theta,\] and \[90^2 = (PB \cdot PD)^2 = 4r^4(1 - \sin \theta)(1 + \sin \theta) = 4r^4(1 - \sin^2 \theta) = 4r^4 \cos^2 \theta.\] Adding these equations, \[56^2 + 90^2 = 4r^4,\] so \[2r^2 = \sqrt{56^2+90^2} = 2\sqrt{28^2+45^2} = 2\sqrt{2809} = 2 \cdot 53 = \boxed{106}.\] ~OrangeQuail9

Solution 5 (Double Angle)

Notice that $\angle APC$ and $\angle BPD$ are both $90^\circ$

Solution 6 (Similar Triangles)

\begin{center}

   \begin{tikzpicture}
       \draw (0,0) circle (4cm);
       \draw (2.8284, -2.8284) -- (2.8284, 2.8284) -- (-2.8284, 2.8284) -- (-2.8284, -2.8284) -- cycle;
       \draw (0, 0) node[anchor=north] {$O$};
       \draw (-2.8284, -2.8284) node[anchor=north east] {$D$};
       \draw (2.8284, -2.8284) node[anchor=north west] {$C$};
       \draw (2.8284, 2.8284) node[anchor=south west] {$B$};
       \draw (-2.8284, 2.8284) node[anchor=south east] {$A$};
       \draw (-0.531, 3.965)
       node[anchor=south] {$P$};
       \draw (-2.8284, -2.8284) -- (2.8284, 2.8284) -- (-0.531, 3.965) -- cycle;
       \draw (2.8284, -2.8284) -- (-2.8284, 2.8284) -- (-0.531, 3.965) -- cycle;
       \draw[dashed] (-0.531, 3.965) -- (1.717, 1.717);
       \draw[dashed] (-0.531, 3.965) -- (-2.248, 2.248);
       \draw (-2.248, 2.248) node[anchor=north east] {$X$};
       \draw (1.717, 1.717) node[anchor=north west] {$Y$};
   \end{tikzpicture}

\end{center}

Let the center of the circle be $O$, and the radius of the circle be $r$. Since $ABCD$ is a rhombus with diagonals $2r$ and $2r$, its area is $\dfrac{1}{2}(2r)(2r) = 2r^2$. Since $AC$ and $BD$ are diameters of the circle, $\triangle ACP$ and $\triangle BDP$ are right triangles. Let $X$ and $Y$ be the foot of the altitudes to $AC$ and $BD$, respectively. We have \[[\triangle APC] = \frac{1}{2}(PA)(PC) = \frac{1}{2}(PX)(AC),\] so $PX = \dfrac{(PA)(PC)}{AC} = \dfrac{28}{r}$. Similarly, \[[\triangle BPD] = \frac{1}{2}(PB)(PD) = \frac{1}{2}(PY)(PB),\] so $PY = \dfrac{(PB)(PD)}{BD} = \dfrac{45}{r}$. Since $\triangle APX \sim \triangle PCX,$ \[\frac{AX}{PX} = \frac{PX}{XC}.\] But $PXOY$ is a rectangle, so $PY$ = $XO$, and our similarity becomes \[\frac{AO - XO}{PX} = \frac{PX}{OC + XO}\] \[\frac{r - PY}{PX} = \frac{PX}{r + PY}.\] Cross multiplying and rearranging gives us $r^2 = PX^2 + PY^2 = \left(\dfrac{28}{r}\right)^2 + \left(\dfrac{45}{r}\right)^2$, which rearranges to $r^4 = 2809$. Therefore $[ABCD] = 2r^2 = \boxed{106}$.

~Cantalon