Difference between revisions of "2023 AIME I Problems/Problem 12"
R00tsofunity (talk | contribs) |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
Miquel point and law of cosines, answer should be 75 | Miquel point and law of cosines, answer should be 75 | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | Denote <math>\theta = \angle AEP</math>. | ||
+ | |||
+ | In <math>AFPE</math>, we have <math>\overrightarrow{AF} + \overrightarrow{FP} + \overrightarrow{PE} + \overrightarrow{EA} = 0</math>. | ||
+ | Thus, | ||
+ | <cmath> | ||
+ | \[ | ||
+ | AF + FP e^{i \theta} + PE e^{i \left( \theta + 60^\circ \right)} | ||
+ | + EA e^{- i 120^\circ} = 0. | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Taking the real and imaginary parts, we get | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | AF + FP \cos \theta + PE \cos \left( \theta + 60^\circ \right) + EA \cos \left( - 120^\circ \right) & = 0 \hspace{1cm} (1) \\ | ||
+ | FP \sin \theta + PE \sin \left( \theta + 60^\circ \right) + EA \sin \left( - 120^\circ \right) & = 0 \hspace{1cm} (2) | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | In <math>BDPF</math>, analogous to the analysis of <math>AFPE</math> above, we get | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | BD + DP \cos \theta + PF \cos \left( \theta + 60^\circ \right) + FB \cos \left( - 120^\circ \right) & = 0 \hspace{1cm} (3) \\ | ||
+ | DP \sin \theta + PF \sin \left( \theta + 60^\circ \right) + FB \sin \left( - 120^\circ \right) & = 0 \hspace{1cm} (4) | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Taking <math>(1) \cdot \sin \left( \theta + 60^\circ \right) - (2) \cdot \cos \left( \theta + 60^\circ \right)</math>, we get | ||
+ | <cmath> | ||
+ | \[ | ||
+ | AF \sin \left( \theta + 60^\circ \right) | ||
+ | + \frac{\sqrt{3}}{2} FP - EA \sin \theta = 0 . \hspace{1cm} (5) | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Taking <math>(3) \cdot \sin \theta - (4) \cdot \cos \theta</math>, we get | ||
+ | <cmath> | ||
+ | \[ | ||
+ | BD \sin \theta - \frac{\sqrt{3}}{2} FP + FB \sin \left( \theta + 120^\circ \right) . \hspace{1cm} (6) | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Taking <math>(5) + (6)</math>, we get | ||
+ | <cmath> | ||
+ | \[ | ||
+ | AF \sin \left( \theta + 60^\circ \right) | ||
+ | - EA \sin \theta | ||
+ | + BD \sin \theta + FB \sin \left( \theta + 120^\circ \right) . | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Therefore, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \tan \theta & = \frac{\frac{\sqrt{3}}{2} \left( AF + FB \right)} | ||
+ | {\frac{FB}{2} + EA - \frac{AF}{2} - BD} \\ | ||
+ | & = 5 \sqrt{3} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Therefore, <math>\tan^2 \theta = \boxed{\textbf{(075) }}</math>. | ||
+ | |||
+ | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
==See also== | ==See also== |
Revision as of 13:49, 8 February 2023
Contents
Problem 12
Let be an equilateral triangle with side length . Points , , and lie on sides , , and , respectively, such that , , and . A unique point inside has the property that Find .
Solution
Miquel point and law of cosines, answer should be 75
Solution
Denote .
In , we have . Thus,
Taking the real and imaginary parts, we get
In , analogous to the analysis of above, we get
Taking , we get
Taking , we get
Taking , we get
Therefore,
Therefore, .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.