Difference between revisions of "2023 AIME I Problems/Problem 1"

(Problem)
(Solution 1)
Line 4: Line 4:
 
==Solutions==
 
==Solutions==
 
===Solution 1===
 
===Solution 1===
We can reword the problem into a simpler problem to solve. The  new problem is "What is the probability two men don't stand opposite of each other?" We will order the men first, since the identities of each person aren't counted. The first man can stand anywhere (<math>\frac{14}{14}</math>), then the second man can stand in 12 spaces out of 13, third man can stand in 10 places, so on until the fifth man stands in 6 places out of 10 possible places. <cmath>\frac{14}{14}\cdot\frac{12}{13}\cdot\frac{10}{12}+\frac{8}{11}+\frac{6}{10} = \frac{48}{143}</cmath>
 
This gives <math>m+n = \boxed{191}.</math>
 
 
~chem1kall
 
  
 
===Solution 2===
 
===Solution 2===

Revision as of 08:45, 8 February 2023

Problem

Solutions

Solution 1

Solution 2

Something else

See also

2023 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions