Difference between revisions of "2022 AMC 10B Problems/Problem 6"

(Solution 4 (Detailed Explanation of Solution 1))
(Solution 4 (Detailed Explanation of Solution 1))
Line 39: Line 39:
  
 
~Dhillonr25
 
~Dhillonr25
 
==Solution 4 (Detailed Explanation of Solution 1)==
 
 
Denote this sequence as <math>a_{n}</math>, then we can find that
 
<cmath>\begin{align*}
 
a_{1} &= 121 = 10^2 + 2\cdot10 + 1 = (10^2 + 10) + (10 + 1), \\
 
a_{2} &= 11211 = (10^4 + 10^3 + 10^2) + (10^2 + 10 + 1), \\
 
a_{3} &= 1112111 = (10^6 + 10^5 + 10^4 + 10^3) + (10^3 + 10^2 + 10 + 1), \\
 
& \ \vdots
 
\end{align*}</cmath>
 
Hence we can induct the general term is
 
<cmath>\begin{align*}
 
a_n &= (10^{2n} + 10^{2n-1} + \ldots + 10^{n+1} + 10^n) + (10^n + 10^{n-1} + \ldots +10 + 1) \\
 
&= 10^n\cdot(10^n + 10^{n-1} + \ldots +10 + 1) + (10^n + 10^{n-1} + \ldots +10 + 1) \\
 
&= \left(10^n+1\right)\sum_{k=0}^{n}10^k.
 
\end{align*}</cmath>
 
Hence, there are <math>\boxed{\textbf{(A) } 0}</math> prime numbers in this sequence.
 
 
~PythZhou
 
  
 
== See Also ==
 
== See Also ==

Revision as of 03:19, 7 February 2023

The following problem is from both the 2022 AMC 10B #6 and 2022 AMC 12B #3, so both problems redirect to this page.

Problem

How many of the first ten numbers of the sequence $121, 11211, 1112111, \ldots$ are prime numbers?

$\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4$

Solution 1 (Generalization)

The $n$th term of this sequence is \[\sum_{k=n}^{2n}10^k + \sum_{k=0}^{n}10^k = 10^n\sum_{k=0}^{n}10^k + \sum_{k=0}^{n}10^k = \left(10^n+1\right)\sum_{k=0}^{n}10^k.\] It follows that the terms are \begin{align*} 121 &= 11\cdot11, \\ 11211 &= 101\cdot111, \\ 1112111 &= 1001\cdot1111, \\ & \ \vdots \end{align*} Therefore, there are $\boxed{\textbf{(A) } 0}$ prime numbers in this sequence.

~MRENTHUSIASM

Solution 2 (Simple Sums)

Observe how \begin{align*} 121 &= 110 + 11, \\ 11211 &= 11100 + 111, \\ 1112111 &= 1111000 + 1111, \\ & \ \vdots \end{align*} all take the form of \[\underbrace{111\ldots}_{n+1}\underbrace{00\ldots}_{n} + \underbrace{111\ldots}_{n+1} = \underbrace{111\ldots}_{n+1}(10^{n} + 1).\] Factoring each of the sums, we have \[11(10+1), 111(100+1), 1111(1000+1), \ldots\] respectively. With each number factored, there are $\boxed{\textbf{(A) } 0}$ primes in the set.

~ab2024

Solution 3 (Educated Guess)

Note that $121$ is divisible by $11$ and $11211$ is divisible by $3$. Because this problem 6 of the AMC 10, we assume we do not need to check two-digit prime divisibility or use obscure theorems. Therefore, the answer is $\boxed{\textbf{(A) } 0}.$

~Dhillonr25

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png