Difference between revisions of "Random Problem"

(Medium Problem)
(Medium Problem)
Line 7: Line 7:
  
 
== Medium Problem ==
 
== Medium Problem ==
Show that there are no finite decimals <math>0.\overline{a_1a_2a_3}</math>
+
Show that there exist no finite decimals <math>a = 0.\overline{a_1a_2a_3\ldots a_n}</math> such that when its digits are rearranged to a different decimal <math>b = 0.\overline{a_x_1a_x_2a_x_3\ldots a_x_n}</math>, <math>a + b = 1</math>.
 +
 
 +
==Solution==
 +
???

Revision as of 11:06, 30 January 2023

Easy Problem

The sum\[\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{2021}{2022!}\]can be expressed as $a-\frac{1}{b!}$, where $a$ and $b$ are positive integers. What is $a+b$?

$\textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024$

Solution

???

Medium Problem

Show that there exist no finite decimals $a = 0.\overline{a_1a_2a_3\ldots a_n}$ such that when its digits are rearranged to a different decimal $b = 0.\overline{a_x_1a_x_2a_x_3\ldots a_x_n}$ (Error compiling LaTeX. Unknown error_msg), $a + b = 1$.

Solution

???