Difference between revisions of "2022 AMC 10B Problems/Problem 6"
MRENTHUSIASM (talk | contribs) m (→Solution 3 (Educated Guess)) |
MRENTHUSIASM (talk | contribs) m (→Solution 2 (Simple Sums)) |
||
Line 29: | Line 29: | ||
& \ \vdots | & \ \vdots | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | all take the form of <cmath>\ | + | all take the form of <cmath>\underbrace{111\ldots}_{n+1}\underbrace{00\ldots}_{n} + \underbrace{111\ldots}_{n+1} = \underbrace{111\ldots}_{n+1}(10^{n} + 1).</cmath> |
Factoring each of the sums, we have <cmath>11(10+1), 111(100+1), 1111(1000+1), \ldots</cmath> respectively. With each number factored, there are <math>\boxed{\textbf{(A) } 0}</math> primes in the set. | Factoring each of the sums, we have <cmath>11(10+1), 111(100+1), 1111(1000+1), \ldots</cmath> respectively. With each number factored, there are <math>\boxed{\textbf{(A) } 0}</math> primes in the set. | ||
Revision as of 02:27, 3 February 2023
- The following problem is from both the 2022 AMC 10B #6 and 2022 AMC 12B #3, so both problems redirect to this page.
Contents
Problem
How many of the first ten numbers of the sequence are prime numbers?
Solution 1 (Generalization)
The th term of this sequence is It follows that the terms are Therefore, there are prime numbers in this sequence.
~MRENTHUSIASM
Solution 2 (Simple Sums)
Observe how all take the form of Factoring each of the sums, we have respectively. With each number factored, there are primes in the set.
~ab2024
Solution 3 (Educated Guess)
Note that is divisible by and is divisible by . Because this problem 6 of the AMC 10, we assume we do not need to check two-digit prime divisibility or use obscure theorems. Therefore, the answer is
~Dhillonr25
See Also
2022 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2022 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 2 |
Followed by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.