Difference between revisions of "2023 AMC 8 Problems/Problem 13"

(Video Solution (Animated))
Line 21: Line 21:
  
 
~Star League (https://starleague.us)
 
~Star League (https://starleague.us)
 +
 +
==See Also==
 +
{{AMC8 box|year=2023|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Revision as of 09:28, 25 January 2023

Problem

Along the route of a bicycle race, 7 water stations are evenly spaced between the start and finish lines, as shown in the figure below. There are also 2 repair stations evenly spaced between the start and finish lines. The 3rd water station is located 2 miles after the 1st repair station. How long is the race in miles?

2023 AMC 8-13.png

$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 96$

Solution

Knowing that there are $7$ equally spaced water stations they are each located $\frac{d}{8}$, $\frac{2d}{8}$,… $\frac{7d}{8}$ of the way from the start. Using the same logic for the $3$ station we have $\frac{d}{3}$ and $\frac{2d}{3}$ for the repair stations. It is given that the 3rd water is $2$ miles ahead of the $1$st repair station. So setting an equation we have $\frac{3d}{8} = \frac{d}{3} + 2$ getting common denominators $\frac{9d}{24} = \frac{8d}{24} + 2$ so then we have $d =  \boxed{\text{(D)}48}$ from this.

~apex304, SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat


Video Solution (Animated)

https://youtu.be/NivfOThj1No

~Star League (https://starleague.us)

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png