Difference between revisions of "2023 AMC 8 Problems/Problem 16"
Pi is 3.14 (talk | contribs) |
|||
Line 1: | Line 1: | ||
The letters P, Q, and R are entered into a <math>20\times20</math> table according to the pattern shown below. How many Ps, Qs, and Rs will appear in the completed table? | The letters P, Q, and R are entered into a <math>20\times20</math> table according to the pattern shown below. How many Ps, Qs, and Rs will appear in the completed table? | ||
− | \begin{array}[b]{|c|c|c|c|c|c} | + | <math>\begin{array}[b]{|c|c|c|c|c|c} |
\vdots &\vdots&\vdots&\vdots&\vdots&\iddots\\\hline | \vdots &\vdots&\vdots&\vdots&\vdots&\iddots\\\hline | ||
Q&R&P&Q&R&\cdots\\\hline | Q&R&P&Q&R&\cdots\\\hline | ||
Line 10: | Line 10: | ||
\end{array} | \end{array} | ||
'Table made by Technodoggo' | 'Table made by Technodoggo' | ||
− | <math>\boxed{\text{A}}~132\text{ Ps, }134\text{ Qs, }134\text{ Rs}< | + | </math>\boxed{\text{A}}~132\text{ Ps, }134\text{ Qs, }134\text{ Rs}<math> |
− | <math>\boxed{\text{B}}~133\text{ Ps, }133\text{ Qs, }134\text{ Rs}< | + | </math>\boxed{\text{B}}~133\text{ Ps, }133\text{ Qs, }134\text{ Rs}<math> |
− | <math>\boxed{\text{C}}~133\text{ Ps, }134\text{ Qs, }133\text{ Rs}< | + | </math>\boxed{\text{C}}~133\text{ Ps, }134\text{ Qs, }133\text{ Rs}<math> |
− | <math>\boxed{\text{D}}~134\text{ Ps, }132\text{ Qs, }134\text{ Rs}< | + | </math>\boxed{\text{D}}~134\text{ Ps, }132\text{ Qs, }134\text{ Rs}<math> |
− | <math>\boxed{\text{E}}~134\text{ Ps, }133\text{ Qs, }133\text{ Rs}< | + | </math>\boxed{\text{E}}~134\text{ Ps, }133\text{ Qs, }133\text{ Rs}<math> |
== Solution 1 == | == Solution 1 == | ||
− | In our <math>5 \times 5< | + | In our </math>5 \times 5<math> grid we can see there are </math>8<math>, </math>9<math> and </math>8<math> of the letters P, Q and R’s respectively. We can see our pattern between each is </math>x<math>, </math>x+1<math>, </math>x<math> for the P, Q and R’s respectively. This such pattern will follow in our bigger example, so we can see that the only answer choice which satisfies this condition is </math>\boxed{\text{(C)}\hspace{0.1 in} 133, 134, 133}$ |
Revision as of 21:35, 24 January 2023
The letters P, Q, and R are entered into a table according to the pattern shown below. How many Ps, Qs, and Rs will appear in the completed table?
\boxed{\text{A}}~132\text{ Ps, }134\text{ Qs, }134\text{ Rs}$$ (Error compiling LaTeX. Unknown error_msg)\boxed{\text{B}}~133\text{ Ps, }133\text{ Qs, }134\text{ Rs}$$ (Error compiling LaTeX. Unknown error_msg)\boxed{\text{C}}~133\text{ Ps, }134\text{ Qs, }133\text{ Rs}$$ (Error compiling LaTeX. Unknown error_msg)\boxed{\text{D}}~134\text{ Ps, }132\text{ Qs, }134\text{ Rs}$$ (Error compiling LaTeX. Unknown error_msg)\boxed{\text{E}}~134\text{ Ps, }133\text{ Qs, }133\text{ Rs}$== Solution 1 ==
In our$ (Error compiling LaTeX. Unknown error_msg)5 \times 5898xx+1x\boxed{\text{(C)}\hspace{0.1 in} 133, 134, 133}$
(Note: you could also "cheese" this problem by listing out all of the letters horizontally in a single line and looking at the repeating pattern.)
~apex304, SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat
Animated Video Solution
~Star League (https://starleague.us)