Difference between revisions of "2023 AMC 8 Problems/Problem 22"
(→Solution) |
|||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
− | Suppose the first two terms were <math>x</math> and <math>y</math>. Then, the next terms would be <math>xy</math>, <math>xy^2</math>, <math>x^2y^2</math>, and <math>x^3y^5</math>. Since <math>x^3y^5</math> is the sixth term, this must be equal to <math>4000</math>. So, <math>x^3y^5=4000 \Rightarrow (xy)^3y^2=4000</math>. Trying out the choices, we get that <math>x=5</math>, <math>y=2</math>, which means that the answer is | + | Suppose the first two terms were <math>x</math> and <math>y</math>. Then, the next terms would be <math>xy</math>, <math>xy^2</math>, <math>x^2y^2</math>, and <math>x^3y^5</math>. Since <math>x^3y^5</math> is the sixth term, this must be equal to <math>4000</math>. So, <math>x^3y^5=4000 \Rightarrow (xy)^3y^2=4000</math>. Trying out the choices, we get that <math>x=5</math>, <math>y=2</math>, which means that the answer is <math>\boxed{\textbf{(D)}\ 5}</math> |
~MrThinker | ~MrThinker |
Revision as of 18:07, 24 January 2023
Problem
In a sequence of positive integers, each term after the second is the product of the previous two terms. The sixth term is . What is the first term?
Solution
Suppose the first two terms were and . Then, the next terms would be , , , and . Since is the sixth term, this must be equal to . So, . Trying out the choices, we get that , , which means that the answer is
~MrThinker