Difference between revisions of "2012 AMC 8 Problems/Problem 19"

(Video Solution)
(Solution 4 Venn Diagrams)
Line 41: Line 41:
 
Thus, the answer is <math>\boxed{\textbf{(C)}\ 9}</math>.    ---LarryFlora
 
Thus, the answer is <math>\boxed{\textbf{(C)}\ 9}</math>.    ---LarryFlora
  
 +
==Solution 4 (Answer Choices)==
 +
Since we know all but <math>8</math> marbles in the jar are green, the jar must have at least <math>9</math> marbles. Then we can just start from <math>C</math> and keep going. If there are <math>9</math> marbles total, there are <math>3</math> red marbles <math>(9-6)</math>, <math>1</math> green marble <math>(9-8)</math>, and <math>5</math> blue marbles <math>(9-4)</math>. Since we assumed there were <math>9</math> marbles and <math>3+1+5=9</math>, the answer is <math>\boxed{\textbf{(C)}\ 9</math>.
  
 
==Video Solution==
 
==Video Solution==

Revision as of 15:51, 12 January 2023

Problem

In a jar of red, green, and blue marbles, all but 6 are red marbles, all but 8 are green, and all but 4 are blue. How many marbles are in the jar?

$\textbf{(A)}\hspace{.05in}6\qquad\textbf{(B)}\hspace{.05in}8\qquad\textbf{(C)}\hspace{.05in}9\qquad\textbf{(D)}\hspace{.05in}10\qquad\textbf{(E)}\hspace{.05in}12$

Solution 1

6 are blue and green- b+g=6

8 are red and blue- r+b=8

4 are red and green- r+g=4


We can do trial and error. Let's make blue 5. That makes green 1 and red 3 because 6-5=1 and 8-5=3. To check this let's plug 1 and 3 into r+g=4 and it does work. Now count the number of marbles- 5+3+1=9. So 9 (C) is the answer.

Solution 2

We already knew the facts: $6$ are blue and green, meaning $b+g=6$; $8$ are red and blue, meaning $r+b=8$; $4$ are red and green, meaning $r+g=4$. Then we need to add these three equations: $b+g+r+b+r+g=2(r+g+b)=6+8+4=18$. It gives us all of the marbles are $r+g+b = 18/2 = 9$. So the answer is $\boxed{\textbf{(C)}\ 9}$. ---LarryFlora

Solution 3 Venn Diagrams

We may draw three Venn diagrams to represent these three cases, respectively.

Screen Shot 2021-08-29 at 9.14.51 AM.png

Let the amount of all the marbles is $x$, meaning $R+G+B = x$.

The Venn diagrams give us the equation: $x = (x-6)+(x-8)+(x-4)$. So $x = 3x-18$, $x = 18/2 =9$. Thus, the answer is $\boxed{\textbf{(C)}\ 9}$. ---LarryFlora

Solution 4 Venn Diagrams

We may draw three Venn diagrams to represent these three cases, respectively.

Screen Shot 2021-08-29 at 9.14.51 AM.png

Let the amount of all the marbles is $x$, meaning $R+G+B = x$.

Adding the three Venn diagrams, it gives us the equation: $x+18 = 3x$. So $2x = 18$, $x = 18/2 =9$. Thus, the answer is $\boxed{\textbf{(C)}\ 9}$. ---LarryFlora

Solution 4 (Answer Choices)

Since we know all but $8$ marbles in the jar are green, the jar must have at least $9$ marbles. Then we can just start from $C$ and keep going. If there are $9$ marbles total, there are $3$ red marbles $(9-6)$, $1$ green marble $(9-8)$, and $5$ blue marbles $(9-4)$. Since we assumed there were $9$ marbles and $3+1+5=9$, the answer is $\boxed{\textbf{(C)}\ 9$ (Error compiling LaTeX. Unknown error_msg).

Video Solution

https://youtu.be/mMph7QH1kX0 Soo, DRMS, NM

https://youtu.be/-p5qv7DftrU ~savannahsolver

Video Solution by OmegaLearn

https://youtu.be/TkZvMa30Juo?t=1316

~pi_is_3.14

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png